A team of Rice University students won the Best Challenge Response Award at the 2025 TCC Wearables Workshop and University Challenge. Photo courtesy Rice.

Rice University students from the George R. Brown School of Engineering and Computing designed a space exercise harness that is comfortable, responsive, and adaptable and has the potential to assist with complex and demanding spacewalks.

A group of students—Emily Yao, Nikhil Ashri, Jose Noriega, Ben Bridges and graduate student Jack Kalicak—mentored by assistant professor of mechanical engineering Vanessa Sanchez, modernized harnesses that astronauts use to perform rigorous exercises. The harnesses are particularly important in preparing astronauts for a reduced-gravity space environment, where human muscles and bones atrophy faster than they do on Earth. However, traditional versions of the harnesses had many limitations that included chafing and bruising.

The new harnesses include sensors for astronauts to customize their workouts by using real-time data and feedback. An additional two sensors measure astronauts’ comfort and exercise performance based on temperature and humidity changes during exercise and load distribution at common pressure points.

“Our student-led team addressed this issue by adding pneumatic padding that offers a customized fit, distributes pressure over a large surface area to reduce discomfort or injuries and also seamlessly adapts to load shifts — all of which together improved astronauts’ performance,” Sanchez said in a news release. “It was very fulfilling to watch these young engineers work together to find innovative and tangible solutions to real-world problems … This innovative adjustable exercise harness transforms how astronauts exercise in space and will significantly improve their health and safety during spaceflights.”

The project was developed in response to a challenge posted by the HumanWorks Lab and Life Science Labs at NASA and NASA Johnson Space Center for the 2025 Technology Collaboration Center’s (TCC) Wearables Workshop and University Challenge, where teams worked to solve problems for industry leaders.

Rice’s adaptive harness won the Best Challenge Response Award. It was funded by the National Science Foundation and Rice’s Office of Undergraduate Research and Inquiry.

“This challenge gave us the freedom to innovate and explore possibilities beyond the current harness technology,” Yao added in the release. “I’m especially proud of how our team worked together to build a working prototype that not only has real-world impact but also provides a foundation that NASA and space companies can build and iterate upon.”

From left: Shubhanshu Shukla, Peggy Whitson, Sławosz Uzanański-Wiśniewksi, Tibor Kapu.

International Space Station welcomes astronauts from successful Axiom Mission 4

Out In Space

The first astronauts in more than 40 years from India, Poland and Hungary arrived at the International Space Station on Thursday, ferried there by SpaceX on a private flight.

The crew of four will spend two weeks at the orbiting lab, performing dozens of experiments. They launched Wednesday from NASA’s Kennedy Space Center.

America’s most experienced astronaut, Peggy Whitson, is the commander of the visiting crew. She works for Axiom Space, the Houston company that arranged the chartered flight.

Besides Whitson, the crew includes India’s Shubhanshu Shukla, a pilot in the Indian Air Force; Hungary’s Tibor Kapu, a mechanical engineer; and Poland’s Slawosz Uznanski-Wisniewski, a radiation expert and one of the European Space Agency’s project astronauts on temporary flight duty.

No one has ever visited the International Space Station from those countries before. The time anyone rocketed into orbit from those countries was in the late 1970s and 1980s, traveling with the Soviets.

“It’s an honor to have you join our outpost of international cooperation and exploration," NASA's Mission Control radioed from Houston minutes after the linkup high above the North Atlantic.

The new arrivals shared hugs and handshakes with the space station's seven full-time residents, celebrating with drink pouches sipped through straws. Six nations were represented: four from the U.S., three from Russia and one each from Japan, India, Poland and Hungary.

"It’s so great to be here finally. It was a long quarantine," Whitson said, referring to the crew's extra-long isolation before liftoff to stay healthy.

They went into quarantine on May 25, stuck in it as their launch kept getting delayed. The latest postponement was for space station leak monitoring, NASA wanted to make sure everything was safe following repairs to a longtime leak on the Russian side of the outpost.

It's the fourth Axiom-sponsored flight to the space station since 2022. The company is one of several that are developing their own space stations due to launch in the coming years. NASA plans to abandon the International Space Station in 2030 after more than three decades of operation, and is encouraging private ventures to replace it.

Intuitive Machine unveiled its RACER lunar terrain vehicle at Space Center Houston. Photo courtesy of Intuitive Machines

Houston space tech co. rolls out futuristic lunar rover for NASA's Artemis missions

to the moon

Houston-based space exploration company Intuitive Machines just unveiled its version of a lunar terrain vehicle that’s designed to be used by astronauts in NASA’s Artemis moon discovery program.

Intuitive Machine recently rolled out its RACER lunar terrain vehicle (LTV) at Space Center Houston. RACER stands for Reusable Autonomous Crewed Exploration Rover.

The rover can accommodate two astronauts and nearly 900 pounds of cargo. In addition, it can pull a trailer loaded with almost 1,800 pounds of cargo.

Intuitive Machines will retain ownership and operational capabilities that will enable remote operation of the LTV between Artemis missions for about 10 years.

NASA chose Intuitive Machines and two other companies to develop advanced LTV capabilities.

“The objective is to enable Artemis astronauts, like the Apollo-era moonwalkers before them, to drive the rover, which features a rechargeable electric battery and a robotic arm, across the lunar surface, to conduct scientific research and prepare for human missions to Mars,” Intuitive Machines says in a post on its website.

The company tapped the expertise of Apollo-era moonwalkers Charlie Duke and Harrison Schmitt to design the pickup-truck-sized RACER. Intuitive Machines engineered the LTV in partnership with Atlas Devices, AVL, Barrios, Boeing, CSIRO, FUGRO, Michelin, Northrop Grumman, and Roush.

“This [project] strategically aligns with the Company’s flight-proven capability to deliver payloads to the surface of the Moon under [NASA’s] Commercial Lunar Payload Services initiative, further solidifying our position as a proven commercial contractor in lunar exploration,” says Steve Altemus, CEO of Intuitive Machines.

Astronauts at NASA’s Johnson Space Center are testing the static prototype of the company’s LTV. Meanwhile, the fully electric mobile demonstration LTV will undergo field testing later this month near Meteor Crater National Park in Arizona.

NASA expects to choose an LTV provider or providers in 2025.

- YouTubewww.youtube.com

SpaceX's Dragon capsule docked onto the ISS and will return to Earth in February. Photo via SpaceX

Stuck NASA astronauts welcome SpaceX capsule that'll bring them home next year

rescue mission

The two astronauts stuck at the International Space Station since June welcomed their new ride home with Sunday’s arrival of a SpaceX capsule.

SpaceX launched the rescue mission on Saturday with a downsized crew of two astronauts and two empty seats reserved for Butch Wilmore and Suni Williams, who will return next year. The Dragon capsule docked in darkness as the two craft soared 265 miles (426 kilometers) above Botswana.

NASA switched Wilmore and Williams to SpaceX following concerns over the safety of their Boeing Starliner capsule. It was the first Starliner test flight with a crew, and NASA decided the thruster failures and helium leaks that cropped up after liftoff were too serious and poorly understood to risk the test pilots’ return. So Starliner returned to Earth empty earlier this month.

The Dragon carrying NASA’s Nick Hague and the Russian Space Agency’s Alexander Gorbunov will remain at the space station until February, turning what should have been a weeklong trip for Wilmore and Williams into a mission lasting more than eight months.

Two NASA astronauts were pulled from the mission to make room for Wilmore and Williams on the return leg.

“I just want to say welcome to our new compadres,” Williams, the space station commander, said once Hague and Gorbunov floated inside and were embraced by the nine astronauts awaiting them.

Hague said it was a smooth flight up. “Coming through the hatch and seeing all the smiles, and as much as I've laughed and cried in the last 10 minutes, I know it's going to be an amazing expedition," he said.

NASA likes to replace its station crews every six months or so. SpaceX has provided the taxi service since the company’s first astronaut flight in 2020. NASA also hired Boeing for ferry flights after the space shuttles were retired, but flawed software and other Starliner issues led to years of delays and more than $1 billion in repairs.

Starliner inspections are underway at NASA’s Kennedy Space Center, with post-flight reviews of data set to begin this week.

“We’re a long way from saying, ‘Hey, we’re writing off Boeing,’” NASA’s associate administrator Jim Free said at a pre-launch briefing.

The arrival of two fresh astronauts means the four who have been up there since March can now return to Earth in their own SpaceX capsule in just over a week, bringing the station's crew size back down to the normal seven. Their stay was extended a month because of the Starliner turmoil.

Although Saturday’s liftoff went well, SpaceX said the rocket’s spent upper stage ended up outside its targeted impact zone in the Pacific because of a bad engine firing. The company has halted all Falcon launches until it figures out what went wrong.was extended a month because of the Starliner turmoil.

Launched from South Texas, SpaceX's Starship survived for around 50 minutes before losing contact and landing in the Indian Ocean. Photo via SpaceX/Twitter

SpaceX's mega rocket launch from Texas base provides mixed results

50-minute flight

SpaceX came close to completing an hourlong test flight of its mega rocket on its third try Thursday, but the spacecraft was lost as it descended back to Earth.

The company said it lost contact with Starship as it neared its goal, a splashdown in the Indian Ocean. The first-stage booster also ended up in pieces, breaking apart much earlier in the flight over the Gulf of Mexico after launching from the southern tip of Texas near the Mexican border.

“The ship has been lost. So no splashdown today,” said SpaceX’s Dan Huot. “But again, it’s incredible to see how much further we got this time around.”

Two test flights last year both ended in explosions minutes after liftoff. By surviving for close to 50 minutes this time, Thursday's effort was considered a win by not only SpaceX's Elon Musk, but NASA as well as Starship soared higher and farther than ever before. The space agency is counting on Starship to land its astronauts on the moon in another few years.

The nearly 400-foot (121-meter) Starship, the biggest and most powerful rocket ever built, headed out over the Gulf of Mexico after liftoff Thursday morning, flying east. Spectators crowded the nearby beaches in South Padre Island and Mexico.

A few minutes later, the booster separated seamlessly from the spaceship, but broke apart 1,500 feet (462 meters) above the gulf, instead of plummeting into the water intact. By then, the spacecraft was well to the east and continuing upward, with no people or satellites on board.

Starship reached an altitude of about 145 miles (233 kilometers) as it coasted across the Atlantic and South Africa, before approaching the Indian Ocean. But 49 minutes into the flight — with just 15 minutes remaining — all contact was lost and the spacecraft presumably broke apart.

At that point, it was 40 miles (65 kilometers) high and traveling around 16,000 mph (25,700 kph).

SpaceX's Elon Musk had just congratulated his team a little earlier. “SpaceX has come a long way,” he said via X, formerly called Twitter. The rocket company was founded exactly 22 years ago Thursday.

NASA watched with keen interest: The space agency needs Starship to succeed in order to land astronauts on the moon in the next two or so years. This new crop of moonwalkers — the first since last century’s Apollo program — will descend to the lunar surface in a Starship after transferring from NASA's Orion capsule in lunar orbit.

NASA Administrator Bill Nelson quickly congratulated SpaceX on what he called a successful test flight as part of the space agency's Artemis moon-landing program.

The stainless steel, bullet-shaped spacecraft launched atop a first-stage booster known as the Super Heavy. Both the booster and the spacecraft are designed to be reusable, although they were never meant to be salvaged Thursday.

On Starship’s inaugural launch last April, several of the booster’s 33 methane-fueled engines failed and the booster did not separate from the spacecraft, causing the entire vehicle to explode and crash into the gulf four minutes after liftoff.

SpaceX managed to double the length of the flight during November’s trial run. While all 33 engines fired and the booster peeled away as planned, the flight ended in a pair of explosions, first the booster and then the spacecraft.

The Federal Aviation Administration reviewed all the corrections made to Starship, before signing off on Thursday’s launch. The FAA said after the flight that it would again investigate what happened. As during the second flight, all 33 booster engines performed well during ascent, according to SpaceX.

Initially, SpaceX plans to use the mammoth rockets to launch the company’s Starlink internet satellites, as well as other spacecraft. Test pilots would follow to orbit, before the company flies wealthy clients around the moon and back. Musk considers the moon a stepping stone to Mars, his ultimate quest.

NASA is insisting that an empty Starship land successfully on the moon, before future moonwalkers climb aboard. The space agency is targeting the end of 2026 for the first moon landing crew under the Artemis program, named after the mythological twin sister of Apollo.

NASA has announced it's pushed back two historic missions — the first of which was originally planned for later this year. Photo via NASA/Ben Smegelsky

NASA postpones historic crew landing until 2026

Houston, we have a delay

Astronauts will have to wait until next year before flying to the moon and another few years before landing on it, under the latest round of delays announced by NASA on Tuesday.

The space agency had planned to send four astronauts around the moon late this year, but pushed the flight to September 2025 because of safety and technical issues. The first human moon landing in more than 50 years also got bumped, from 2025 to September 2026.

“Safety is our top priority," said NASA Administrator Bill Nelson. The delays will “give Artemis teams more time to work through the challenges.”

The news came barely an hour after a Pittsburgh company abandoned its own attempt to land its spacecraft on the moon because of a mission-ending fuel leak.

Launched on Monday as part of NASA's commercial lunar program, Astrobotic Technology's Peregrine lander was supposed to serve as a scout for the astronauts. A Houston company will give it a shot with its own lander next month.

NASA is relying heavily on private companies for its Artemis moon-landing program for astronauts, named after the mythological twin sister of Apollo.

SpaceX’s Starship mega rocket will be needed to get the first Artemis moonwalkers from lunar orbit down to the surface and back up. But the nearly 400-foot (121-meter) rocket has launched from Texas only twice, exploding both times over the Gulf of Mexico.

The longer it takes to get Starship into orbit around Earth, first with satellites and then crews, the longer NASA will have to wait to attempt its first moon landing with astronauts since 1972. During NASA’s Apollo era, 12 astronauts walked on the moon.

The Government Accountability Office warned in November that NASA was likely looking at 2027 for its first astronaut moon landing, citing Elon Musk’s Starship as one of the many technical challenges. Another potential hurdle: the development of moonwalking suits by Houston’s Axiom Space.

“We need them all to be ready and all to be successful in order for that very complicated mission to come together,” said Amit Kshatriya, NASA's deputy associate administrator.

NASA has only one Artemis moonshot under its belt so far. In a test flight of its new moon rocket in 2022, the space agency sent an empty Orion capsule into lunar orbit and returned it to Earth. It’s the same kind of capsule astronauts will use to fly to and from the moon, linking up with Starship in lunar orbit for the trip down to the surface.

Starship will need to fill up its fuel tank in orbit around Earth, before heading to the moon. SpaceX plans an orbiting fuel depot to handle the job, another key aspect of the program yet to be demonstrated.

NASA’s moon-landing effort has been delayed repeatedly over the past decade, adding to billions of dollars to the cost. Government audits project the total program costs at $93 billion through 2025.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics co. unveils new robot that can handle extreme temperatures

Hot New Robot

Houston- and Boston-based Square Robot Inc.'s newest tank inspection robot is commercially available and certified to operate at extreme temperatures.

The new robot, known as the SR-3HT, can operate from 14°F to 131°F, representing a broader temperature range than previous models in the company's portfolio. According to the company, its previous temperature range reached 32°F to 104°F.

The new robot has received the NEC/CEC Class I Division 2 (C1D2) certification from FM Approvals, allowing it to operate safely in hazardous locations and to perform on-stream inspections of aboveground storage tanks containing products stored at elevated temperatures.

“Our engineering team developed the SR-3HT in response to significant client demand in both the U.S. and international markets. We frequently encounter higher temperatures due to both elevated process temperatures and high ambient temperatures, especially in the hotter regions of the world, such as the Middle East," David Lamont, CEO of Square Robot, said in a news release. "The SR-3HT employs both active and passive cooling technology, greatly expanding our operating envelope. A great job done (again) by our engineers delivering world-leading technology in record time.”

The company's SR-3 submersible robot and Side Launcher received certifications earlier this year. They became commercially available in 2023, after completing initial milestone testing in partnership with ExxonMobil, according to Square Robot.

The company closed a $13 million series B round in December, which it said it would put toward international expansion in Europe and the Middle East.

Square Robot launched its Houston office in 2019. Its autonomous, submersible robots are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments.

---

This article originally appeared on EnergyCapitalHTX.com.

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.