This growing Houston company is providing industrial industries with smart analytics. Getty Images

A Houston-based analytics-focused company is gearing up for growth in 2019 and plans to staff up its headquarters and remote offices abroad.

Arundo Analytics Inc. brings industrial companies — which sometimes are slow to adopt brand-new technology — into the world of machine learning and advanced analytics to help boost revenue, cut costs and reduce risks.

The startup's enterprise software gives asset-heavy industrial businesses "a virtual window into their day-to-day operations," says Stuart Morstead, co-founder and chief operating officer of Arundo. Among the operations that benefit from software are equipment maintenance, safety, logistics and scheduling.

Morstead points out that most industrial companies that encounter issues with operations such as equipment maintenance "lack the data science and software capabilities to drive value from insights into their daily operations."

Arundo aims to solve that problem by incorporating machine learning and advanced analytics — the kind of innovations emanating from the likes of Amazon, Google, and IBM — into everyday business operations at industrial companies, says Morstead, a former partner at consulting firm McKinsey & Co. and a graduate of Rice University.

Aside from its broad enterprise software, Arundo supplies out-of-the-box applications that tackle individual industrial challenges like flow metering for the offshore oil and gas industry and monitoring the condition of equipment. The virtual cloud-based multiphase flow meter is sold as part of a software package from industrial technology giant ABB.

More than 50 of Arundo's estimated 110 employees work on that technology from the startup's headquarters in downtown Houston. To propel its growth, Arundo plans to add employees this year in Houston as well as its other offices in Canada, Norway, Sweden and the United Kingdom, according to Morstead.

In 2016, Arundo graduated from Stanford University's StartX accelerator program. A year later, Arundo was named to the MIT STEX25 accelerator program by the Massachusetts Institute of Technology Startup Exchange.

Since its founding in 2015, Arundo has raised more $35 million in capital, including a Series A round of $28 million that closed in the first half of 2018. Investors include Sundt AS, Stokke Industri, Horizon, Canica, Strømstangen, Arctic Fund Management, Stanford-StartX Fund and Northgate Partners.

Aside from drawing more funding in 2018, the startup set up several strategic partnerships designed to increase the adoption of Arundo's software in sectors such as oil and gas, manufacturing, shipping, construction and maritime. Among the new partners are Dell Technologies, DNV GL's Veracity platform and WorleyParsons.

Going forward, Morstead says Arundo aims to bring its software expertise, business prowess and "world-class data science" to even more industrial companies and their physical assets as part of the global Industrial Internet of Things sector. That market is projected to approach $1 trillion by 2025, up from $100 billion in 2016.

To be sure, Arundo is competing in a market that's rife with opportunity. Consulting firm Accenture estimates the IIoT market could add $14.2 trillion to the global economy by 2030.

"Arguably the biggest driver of productivity and growth in the next decade, the Industrial Internet of Things will accelerate the reinvention of sectors that account for almost two-thirds of world output," the Accenture report says.

Tor Jakob Ramsøy, founder and CEO of Arundo, certainly grasps the enormous potential of IIoT.

"Asset-heavy companies can no longer afford to make business decisions based on an incomplete view of their organization," Ramsøy, a former McKinsey partner, said in a 2018 news release. "By combining deep data and [artificial intelligence] knowledge with decades of cumulative experience in enterprise consulting, Arundo is ushering in a new era in IIoT."

Tracking performance

Courtesy of Arundo

Arundo's Condition & Performance Monitoring Software can easily be plugged into a company's system and track its equipment using cloud technology.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.