Houston-based Proxima Clinical Research has expanded its footprint thanks to a recent partnership. Image via proximacro.com

Houston-based Proxima Clinical Research announced this month that it will expand its clinical trial offerings by adding NEXT Oncology to its Early Phase Oncology Network, or EPON.

NEXT Oncology is a Phase I clinical trial treatment center with locations in Austin, Dallas, San Antonio, and Virginia, as well as international locations in Barcelona and Madrid. These centers provide innovative and investigational treatments and therapies to patients with advanced forms of cancers.

The addition of NEXT Oncology's clinics brings Proxima's oncology network up to 14 physical locations and eight clinical practices, Robbin Frnka, executive director of clinical development and strategy at Proxima CRO tells InnovationMap.

“Early phase oncology trials are some of the most delicate and important trials to conduct, both from a science perspective and in offering hope for late-stage patients,” Dr. Anthony Tolcher, CEO and founder of NEXT Oncology, says in a statement. “We proudly designed NEXT Oncology specifically to bring the best new agents to patients through our specially designed centers located around the world. This new relationship with Proxima CRO’s EPON will help us further enhance our mission and contribute to our life’s work of advancing cancer treatments to save more lives from cancer around the world.”

Proxima is a Houston-based contract research organization focused on supporting life science startups as they grow and scale. It was recently named to the the Inc. 5000 regional rankings for the Southwest for its fast-growing revenue.

The company launched its EPON in March to support Phase I and Phase II clinical oncology trials and a group of oncology-specific scientific experts. The Mary Crowley Cancer Research, a specialized clinical research center in Dallas, was one of the first to join the network.

"Finding the right clinical sites and investigators with the right patients is one of the biggest struggles of early phase clinical trials," Frnka says in a March statement. "Our Early Phase Oncology Network, which we're calling EPON, includes some of the most prominent investigators in early phase trials. Receiving expert feedback, insight, and guidance from this skilled scientific panel is critical to the success of these earliest phase trials."

In addition to work in the cancer field, Proxima also launched its M1 MedTech accelerator last year aimed at helping startups quickly grow their health tech businesses. Its inaugural cohort included startups with new tech and treatments for heart arrhythmias, ultrasounds, bioelectric implants in the body and more.

The company also recently expanded its footprint within the Texas Medical Center Innovation Factory.

InnovationMap spoke with Proxima CEO and Co-founder Kevin Coker on the Houston Innovators Podcast.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.