Spun out of Baylor College of Medicine, Phiogen was selected out of 670 companies to pitch at SXSW earlier this month. Photo via Getty Images

A new Houston biotech company won a special award at the 16th Annual SXSW Pitch Award Ceremony earlier this month.

Phiogen, one of 45 companies that competed in nine categories, was the winner for best inclusivity, much to the surprise of the company’s CEO, Amanda Burkhardt.

Burkhardt tells InnovationMap that while she wanted to represent the heavily female patient population that Phiogen seeks to treat, really she just hires the most skilled scientists.

“The best talent was the folks that we have and it ends up being we have three green card holders on our team. As far as ethnicities, we have on our team we have Indian, African-American, Korean, Chinese Pakistani, Moroccan and Hispanic people and that just kind of just makes up the people who helped us on a day-to-day basis,” she explains.

Phiogen was selected out of 670 companies to be in the health and nutrition category at SXSW.

“We did really well, but there was another company that also did really well. And so we were not selected for the pitch competition, which we were a little bummed about because I killed the pitch,” Burkhardt recalls.

But Phiogen is worthy of note, pitch competition or not. The new company spun off from research at Dr. Anthony Maresso’s TAILOR Labs, a personalized phage therapy center at Baylor College of Medicine, last June.

“Our whole goal is to create the next generation of anti-infectives,” says Burkhardt.

That means that the company is making alternatives to antibiotics, but as Burkhardt says, “We’re hoping to be better than antibiotics.”

How does it work? Bacteriophages are viruses that infect bacteria.

“You can imagine them as the predators in the bacteria world, but they don't infect humans. They don't affect animals. They only infect bacteria,” Burkhardt explains.

Phiogen utilizes carefully honed bacteriophages to attack bacteria that include the baddies behind urinary tract infection (UTI), bacteremia (bacteria in the blood), and skin wounds.

The team’s primary focus is on treatment-resistant UTI. One example was a male patient who received Phiogen’s treatment thanks to an emergency-use authorization from the FDA. The gentleman had been suffering from an infection for 20 years. He was treated with Phiogen’s bacteriophage therapy for two weeks and completely cleared his infection with no recurrence.

Amanda Burkhardt is the CEO of Phiogen. Photo via LinkedIn

But Phiogen has its sights set well beyond the first maladies it’s treated. An oft-quoted 2016 report projected that by 2050, 10 million people a year will be dying from drug-resistant infections.

“A lot of scientists call it the silent pandemic because it's happening now, we're living in it, but there's just not as much being said about it because it normally happens to people who are already in the hospital for something else, or it's a comorbidity, but that's not always the case, especially when we're talking about urinary tract infections,” says Burkhardt.

Bacteriophages are important because they can be quickly trained to fight against resistant strains, whereas it takes years and millions of dollars to develop new antibiotics. There are 13 clinical trials that are currently taking place for bacteriophage therapy. Burkhardt estimates that the treatment method will likely gain FDA approval in the next five years.

“The FDA actually has been super flexible on progressing forward. Because they are naturally occurring, there's not really a safety risk with these products,” she says.

And Burkhardt, whose background is in life-science commercialization, says there’s no better place to build Phiogen than in Houston.

“You have Boston, you have the Bay [Area], and you have the Gulf Coast,” she says. “And Houston is cheaper, the people are friendlier, and it’s not a bad place to be in the winter.”

She also mentions the impressive shadow that Helix Park will cast over the ecosystem. Phiogen will move later this year to the new campus — one of the labs selected to join Baylor College of Medicine.

And as for that prize, chances are, it won’t be Phiogen’s last.

These are the latest COVID-19-focused research projects happening at Houston institutions. Photo via Getty Images

3 Houston research groups dive into game changing COVID-19 projects

Research roundup

Researchers across Houston are working on COVID-19 innovations every day, and scientists are constantly finding new ways this disease is affecting humankind.

Wastewater detection, mental illness effects, a software solution to testing — here's your latest roundup of research news in Houston.

Baylor College of Medicine working in a group to detect SARS-CoV2 in wastewater

A team of scientists are testing Houston wastewater for traces of SARS-CoV2. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

According to researchers at Baylor College of Medicine, who are working in partnership with the Houston Health Department and Rice University, testing the city's wastewater for SARS-CoV2 can help predict where outbreaks are likely to happen.

In May, researchers analyzed wastewater samples that were collected every week from 39 sites in the city and found traces of the virus. The research project was directed by Baylor microbiologist Dr. Anthony Maresso, director of BCM TAILOR Labs.

"This is not Houston's first infectious disease crisis," Maresso says in a news release. "Wastewater sampling was pioneered by Joseph Melnick, the first chair of Baylor's Department of Molecular Virology and Microbiology, to get ahead of polio outbreaks in Houston in the 1960s. This work essentially ushered in the field of environmental virology, and it began here at Baylor. TAILOR Labs is just continuing that tradition by providing advanced science measures to support local public health intervention."

The researchers will continue into 2021 and are working with the city and local governments on their findings.

"It's a cost effective way to gauge Houston's total viral load. It tracks well ahead of positivity rate, 10 days in some cases," sways Dr. Austen Terwilliger, director of operations at TAILOR, in the release. "At the moment, we are at the lowest viral levels since we started sampling, which is excellent news."

University of Houston researchers looking into effect of pandemic on mental illness

Michael Zvolensky, University of Houston professor of psychology, is studying substance abuse as a coping method amid COVID-19. Photo via UH.edu

While physical health and economic impacts of the coronavirus have been the focus of attention amid the pandemic, mental health effects are estimated to inflict more damage if not address, according to new research by Michael Zvolensky, University of Houston professor of psychology and director of the Anxiety and Health Research Laboratory/Substance Use Treatment Clinic.

Zvolensky has published two papers on his research discussing the psychological behavior issues related to the COVID-19 pandemic from a behavioral science perspective, according to a press release from UH.

"The impact of COVID-19 on psychological symptoms and disorders, addiction and health behavior is substantial and ongoing and will negatively impact people's mental health and put them at greater risk for chronic illness and drug addiction," reports Zvolensky in Behaviour Research and Therapy. "It will not equally impact all of society. Those at greater risk are those that have mental health vulnerabilities or disorders."

For those who 'catastrophize' the pandemic, Zvolensky explains in his paper, the impact from stress is increased — as is the possibility for substance abuse.

"That sets in motion a future wave of mental health, addiction and worsening health problems in our society. It's not going to go away, even with a vaccination, because the damage is already done. That's why we're going to see people with greater health problems struggling for generations," says Zvolensky in the release.

He evaluated a group of 160 participants on pandemic-related fear and worry and substance abuse as a coping method. The "results may provide critical clinical information for helping individuals cope with this pandemic," he says.

Bioinformatics research group at Rice University is designing novel SARS-CoV-2 test

Rice University bioinformatics researcher Todd Treangen has created a software solution for a COVID-19 test. Photo via rice.edu

Can software help save lives in this pandemic? A Rice University computer scientist thinks it's worth a shot.

Bioinformatics researcher Todd Treangen is working with a molecular diagnostics company to optimize the design and computational evaluation of molecular detection assays for viral RNA of SARS-CoV-2, according to a press release from Rice. Great Basin Scientific and the Rice researchers hope their work will streamline the development and commercialization of COVID-19 testing.

"This exciting collaboration with Great Basin will allow for computational methods and software developed in my research group to directly contribute to fast, sensitive and affordable detection and monitoring of SARS-CoV-2 and emerging pathogens," Treangen said.

The company, which is based in Salt Lake City, will use Treangen lab's novel bioinformatics software called OliVar to work on the diagnostic test. Great Basin Scientific is expected to seek emergency use authorization for the test from the Food and Drug Administration later this year.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston neighbor named richest small town in Texas for 2025

Ranking It

Affluent Houston neighbor Bellaire is cashing in as the richest small town in Texas for 2025, according to new study from GoBankingRates.

The report, "The Richest Small Town in Every State," used data from the U.S. Census Bureau's American Community Survey to determine the 50 richest small towns in America based on their median household income.

Of course, Houstonians realize that describing Bellaire as a "small town" is a bit of misnomer. Located less than 10 miles from downtown and fully surrounded by the City of Houston, Bellaire is a wealthy enclave that boasts a population of just over 17,000 residents. These affluent citizens earn a median $236,311 in income every year, which GoBankingRates says is the 11th highest household median income out of all 50 cities included in the report.

The average home in this city is worth over $1.12 million, but Bellaire's lavish residential reputation often attracts properties with multimillion-dollar price tags.

Bellaire also earned a shining 81 livability score for its top quality schools, health and safety, commute times, and more. The livability index, provided by Toronto, Canada-based data analytics and real estate platform AreaVibes, said Bellaire has "an abundance of exceptional local amenities."

"Among these are conveniently located grocery stores, charming coffee shops, diverse dining options and plenty of spacious parks," AreaVibes said. "These local amenities contribute significantly to its overall appeal, ensuring that [residents'] daily needs are met and offering ample opportunities for leisure and recreation."

Earlier in 2025, GoBankingRates ranked Bellaire as the No. 23 wealthiest suburb in America, and it's no stranger to being named on similar lists comparing the richest American cities.

---

This article originally appeared on CultureMap.com.

How a Houston startup is taking on corrosion, a costly climate threat

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

This article originally appeared on our sister site, EnergyCapitalHTX.com.

These 50+ Houston scientists rank among world’s most cited

science stars

Fifty-one scientists and professors from Houston-area universities and institutions were named among the most cited in the world for their research in medicine, materials sciences and an array of other fields.

The Clarivate Highly Cited Researchers considers researchers who have authored multiple "Highly Cited Papers" that rank in the top 1percent by citations for their fields in the Web of Science Core Collection. The final list is then determined by other quantitative and qualitative measures by Clarivate's judges to recognize "researchers whose exceptional and community-wide contributions shape the future of science, technology and academia globally."

This year, 6,868 individual researchers from 60 different countries were named to the list. About 38 percent of the researchers are based in the U.S., with China following in second place at about 20 percent.

However, the Chinese Academy of Sciences brought in the most entries, with 258 researchers recognized. Harvard University with 170 researchers and Stanford University with 141 rounded out the top 3.

Looking more locally, the University of Texas at Austin landed among the top 50 institutions for the first time this year, tying for 46th place with the Mayo Clinic and University of Minnesota Twin Cities, each with 27 researchers recognized.

Houston once again had a strong showing on the list, with MD Anderson leading the pack. Below is a list of the Houston-area highly cited researchers and their fields.

UT MD Anderson Cancer Center

  • Ajani Jaffer (Cross-Field)
  • James P. Allison (Cross-Field)
  • Maria E. Cabanillas (Cross-Field)
  • Boyi Gan (Molecular Biology and Genetics)
  • Maura L. Gillison (Cross-Field)
  • David Hong (Cross-Field)
  • Scott E. Kopetz (Clinical Medicine)
  • Pranavi Koppula (Cross-Field)
  • Guang Lei (Cross-Field)
  • Sattva S. Neelapu (Cross-Field)
  • Padmanee Sharma (Molecular Biology and Genetics)
  • Vivek Subbiah (Clinical Medicine)
  • Jennifer A. Wargo (Molecular Biology and Genetics)
  • William G. Wierda (Clinical Medicine)
  • Ignacio I. Wistuba (Clinical Medicine)
  • Yilei Zhang (Cross-Field)
  • Li Zhuang (Cross-Field)

Rice University

  • Pulickel M. Ajayan (Materials Science)
  • Pedro J. J. Alvarez (Environment and Ecology)
  • Neva C. Durand (Cross-Field)
  • Menachem Elimelech (Chemistry and Environment and Ecology)
  • Zhiwei Fang (Cross-Field)
  • Naomi J. Halas (Cross-Field)
  • Jun Lou (Materials Science)
  • Aditya D. Mohite (Cross-Field)
  • Peter Nordlander (Cross-Field)
  • Andreas S. Tolias (Cross-Field)
  • James M. Tour (Cross-Field)
  • Robert Vajtai (Cross-Field)
  • Haotian Wang (Chemistry and Materials Science)
  • Zhen-Yu Wu (Cross-Field)

Baylor College of Medicine

  • Nadim J. Ajami (Cross-Field)
  • Biykem Bozkurt (Clinical Medicine)
  • Hashem B. El-Serag (Clinical Medicine)
  • Matthew J. Ellis (Cross-Field)
  • Richard A. Gibbs (Cross-Field)
  • Peter H. Jones (Pharmacology and Toxicology)
  • Sanjay J. Mathew (Cross-Field)
  • Joseph F. Petrosino (Cross-Field)
  • Fritz J. Sedlazeck (Biology and Biochemistry)
  • James Versalovic (Cross-Field)

University of Houston

  • Zhifeng Ren (Cross-Field)
  • Yan Yao (Cross-Field)
  • Yufeng Zhao (Cross-Field)
  • UT Health Science Center Houston
  • Hongfang Liu (Cross-Field)
  • Louise D. McCullough (Cross-Field)
  • Claudio Soto (Cross-Field)

UTMB Galveston

  • Erez Lieberman Aiden (Cross-Field)
  • Pei-Yong Shi (Cross-Field)

Houston Methodist

  • Eamonn M. M. Quigley (Cross-Field)