This Houston venture capital leader is looking at how 2020 — for all its disappointments — might be a great year for B2B software-as-a-service companies. Getty Images

B2B software as a service, or SaaS, founders entered 2020 riding a wave of the longest economic expansion in United States history. Valuations increased to new highs, funding rounds continued getting larger at each stage, and forecasts went up and to the right fast. But then, March hit.

Quickly and seemingly out of nowhere, headlines became dominated by apocalyptic predictions of death, record levels of unemployment, shocking economic forecasts of GDP contraction, historic mass layoffs and furloughs, and unprecedented multi-trillion dollar economic stimulus packages. For founders every instinct began screaming to cut costs and hunker down.

But should B2B SaaS founders cut their organizations right now? Through analyzing a few key events and looking to the evidence in the market today, founders can develop a strategy for growing during this crisis. Not only is growth cheaper for most B2B SaaS against the backdrop of economic meltdown, but with the majority following a hunker-down instinct, a growing B2B SaaS firm will compare very favorably against a landscape of stale and stagnant competitors.

Reviewing the 1918 Spanish Flu Pandemic and the 2008 downturn

While the health implications vary widely between the current pandemic and the 1918 flu epidemic, the economic reactions share many similarities. The US response to 1918 was just as fractured as the states' reactions to COVID have been this year. As cities and states in 1918 shut down commerce to stem the spread of the flu, economic contraction quickly gave way to rebound, the so called "V-shaped recovery," despite the Spanish Flu having much higher death rates among working individuals than COVID-19.

There are major differences between 1918 and 2020, however. First, there is untapped potential in technology to replace workers. As businesses look for ways to cut costs, expect them to aggressively turn to automation, ultimately depressing real wages. Second, the 1918 response did not include shutdown measures as draconian as those we are experiencing in 2020. This could lead to permanent output loss across a wide range of industries, increasing real prices just as real wages decline. And third, the trillions of dollars in federal economic relief are unlike anything attempted in 1918.

The 2008 downturn that nearly brought the financial sector to a halt rippled through the economy as businesses in a wide range of industries made steep cuts to operations and capital expenditures. Despite this dangerous environment, SaaS firms increased profitability and continued to grow revenues each quarter. Growth slowed but remained positive while most other companies experienced absolute declines in revenue.

Customer acquisition for SaaS businesses usually gets more efficient during downturns, driving the potential for faster growth. The performance of all publicly traded B2B SaaS firms during 2008 illustrated in Figure 1 above proves the resilience of this category during a recession. While revenue continued to grow, profitability rose from a 10 percent loss on average to a 5 percent gain on average by 2010. This is likely due to firms freezing salaries and hiring and perhaps cutting down the sales and marketing budgets.

Downturn case study: Salesforce

Salesforce entered the downturn as a category leader in B2B SaaS with nearly $500M in revenue in 2007 and $3.5 million in operating losses. Throughout 2008, the company grew revenues by 51 percent to $748 million and operating profit surged to $20.3 million. And in 2009, the company repeated this stellar performance by growing revenues 44 percent to $1,077M and operating profit to $63 million. These results occurred against the backdrop of a global financial downturn and with a product focused on helping people sell more effectively (not something one would expect would sell well during a free-fall recession).

The revenue growth throughout those years followed the growth in sales and marketing spend. In 2008, the company grew sales and marketing by 49 percent, driving 51 percent revenue growth at about $1.50 of sales expense per $1 of recognized revenue added. In 2009, the company grew sales and marketing 42 percent resulting in 44 percent revenue growth at $1.63 of sales expense per $1 of recognized revenue. By 2010, the sales growth advantage was gone and Salesforce not only dropped its expense growth rate but also reverted to spending $2.64 per $1 of new revenue added.


Looking at these results Salesforce executed on the growth opportunities in 2008 and 2009 by ramping up sales expenses. The relative cost to acquire customers in 2008 and 2009 compared to 2010 proved significantly cheaper (approximately 40 percent less expensive). When faced with an advantage like that, every founder should charge ahead.

------

Dougal Cameron is director of Houston-based Golden Section Venture Capital.

GOOSE has invested in a logistics automation startup that has just emerged from stealth-mode operations. Photo courtesy of Outrider

Houston investor group backs growing logistics automation startup emerging from stealth

Money moves

A Golden, Colorado-based logistics technology startup has emerged from stealth-mode operation aft two years of development to collect its recent $53 million investment that a Houston investor group contributed to.

Houston-based GOOSE has announced its participation in Outrider's recent raise, which included both a seed and series A round. The startup has created an autonomous yard operations tool for logistics purposes. The company also received investment from the likes of NEA, 8VC, Koch Disruptive Technologies, Fraser McCombs Capital, Prologis, Inc., Schematic Ventures, Loup Ventures, and more, according to a news release.

The goal of distribution yards is to keep semi-trailers full of freight moving quickly in the space between the warehouse doors and public roads. However, many of the processes that make up yard operations are manual, inefficient, and hazardous.

The current situation in logistics hubs is not optimized, and yard operations are ineffective and even hazardous.

"Logistics yards offer a confined, private-property environment and a set of discrete, repetitive tasks that make the ideal use case for autonomous technology," says Andrew Smith, founder and CEO of Outrider, in the release. "But today's yards are also complex, often chaotic settings, with lots of work that's performed manually. This is why an overarching systems approach – with an autonomous truck at its center – is key to automating every major operation in the yard."

Outrider's technology can automate repetitive and manual tasks, like moving trailers around, hitching and unhitching them, connecting and disconnecting trailer brake lines, and monitoring trailer locations, per the release.

"Outrider represents the type of company we at GOOSE want to fund," says Samantha Lewis, director of GOOSE, in a news release. "It is innovative, disruptive, and led by an all-star CEO that has a proven track record in recruiting top talent and top tier investors. GOOSE has been with Andrew from the beginning of his entrepreneurial pursuits and, still, he continues to impress us everyday."

Outrider, which has 75 employees — including 50 engineers focused on the automation technology — has launched pilots with Georgia-Pacific and four Fortune 200 companies. Smith says his relationship with GOOSE has had a positive effect on his career and his startup.

"The experience of GOOSE membership is unmatched. GOOSE, it's founder Jack Gill, and initial members, Art Ciocca and Rod Canion, played major roles in my entrepreneurial career by funding my first successful clean startup and then becoming seed investors in Outrider," says Smith in the release. "I am fortunate to have the team at GOOSE by our side again as we officially emerge from stealth and continue to scale the business."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

​Planned UT Austin med center, anchored by MD Anderson, gets $100M gift​

med funding

The University of Texas at Austin’s planned multibillion-dollar medical center, which will include a hospital run by Houston’s University of Texas MD Anderson Cancer Center, just received a $100 million boost from a billionaire husband-and-wife duo.

Tench Coxe, a former venture capitalist who’s a major shareholder in chipmaking giant Nvidia, and Simone Coxe, co-founder and former CEO of the Blanc & Otus PR firm, contributed the $100 million—one of the largest gifts in UT history. The Coxes live in Austin.

“Great medical care changes lives,” says Simone Coxe, “and we want more people to have access to it.”

The University of Texas System announced the medical center project in 2023 and cited an estimated price tag of $2.5 billion. UT initially said the medical center would be built on the site of the Frank Erwin Center, a sports and entertainment venue on the UT Austin campus that was demolished in 2024. The 20-acre site, north of downtown and the state Capitol, is near Dell Seton Medical Center, UT Dell Medical School and UT Health Austin.

Now, UT officials are considering a bigger, still-unidentified site near the Domain mixed-use district in North Austin, although they haven’t ruled out the Erwin Center site. The Domain development is near St. David’s North Medical Center.

As originally planned, the medical center would house a cancer center built and operated by MD Anderson and a specialty hospital built and operated by UT Austin. Construction on the two hospitals is scheduled to start this year and be completed in 2030. According to a 2025 bid notice for contractors, each hospital is expected to encompass about 1.5 million square feet, meaning the medical center would span about 3 million square feet.

Features of the MD Anderson hospital will include:

  • Inpatient care
  • Outpatient clinics
  • Surgery suites
  • Radiation, chemotherapy, cell, and proton treatments
  • Diagnostic imaging
  • Clinical drug trials

UT says the new medical center will fuse the university’s academic and research capabilities with the medical and research capabilities of MD Anderson and Dell Medical School.

UT officials say priorities for spending the Coxes’ gift include:

  • Recruiting world-class medical professionals and scientists
  • Supporting construction
  • Investing in technology
  • Expanding community programs that promote healthy living and access to care

Tench says the opportunity to contribute to building an institution from the ground up helped prompt the donation. He and others say that thanks to MD Anderson’s participation, the medical center will bring world-renowned cancer care to the Austin area.

“We have a close friend who had to travel to Houston for care she should have been able to get here at home. … Supporting the vision for the UT medical center is exactly the opportunity Austin needed,” he says.

The rate of patients who leave the Austin area to seek care for serious medical issues runs as high as 25 percent, according to UT.

New Rice Brain Institute partners with TMC to award inaugural grants

brain trust

The recently founded Rice Brain Institute has named the first four projects to receive research awards through the Rice and TMC Neuro Collaboration Seed Grant Program.

The new grant program brings together Rice faculty with clinicians and scientists at The University of Texas Medical Branch, Baylor College of Medicine, UTHealth Houston and The University of Texas MD Anderson Cancer Center. The program will support pilot projects that address neurological disease, mental health and brain injury.

The first round of awards was selected from a competitive pool of 40 proposals, and will support projects that reflect Rice Brain Institute’s research agenda.

“These awards are meant to help teams test bold ideas and build the collaborations needed to sustain long-term research programs in brain health,” Behnaam Aazhang, Rice Brain Institute director and co-director of the Rice Neuroengineering Initiative, said in a news release.

The seed funding has been awarded to the following principal investigators:

  • Kevin McHugh, associate professor of bioengineering and chemistry at Rice, and Peter Kan, professor and chair of neurosurgery at the UTMB. McHugh and Kan are developing an injectable material designed to seal off fragile, abnormal blood vessels that can cause life-threatening bleeding in the brain.
  • Jerzy Szablowski, assistant professor of bioengineering at Rice, and Jochen Meyer, assistant professor of neurology at Baylor. Szablowski and Meyer are leading a nonsurgical, ultrasound approach to deliver gene-based therapies to deep brain regions involved in seizures to control epilepsy without implanted electrodes or invasive procedures.
  • Juliane Sempionatto, assistant professor of electrical and computer engineering at Rice, and Aaron Gusdon, associate professor of neurosurgery at UTHealth Houston. Sempionatto and Gusdon are leading efforts to create a blood test that can identify patients at high risk for delayed brain injury following aneurysm-related hemorrhage, which could lead to earlier intervention and improved outcomes.
  • Christina Tringides, assistant professor of materials science and nanoengineering at Rice, and Sujit Prabhu, professor of neurosurgery at MD Anderson, who are working to reduce the risk of long-term speech and language impairment during brain tumor removal by combining advanced brain recordings, imaging and noninvasive stimulation.

The grants were facilitated by Rice’s Educational and Research Initiatives for Collaborative Health (ENRICH) Office. Rice says that the unique split-funding model of these grants could help structure future collaborations between the university and the TMC.

The Rice Brain Institute launched this fall and aims to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders. Last month, the university's Shepherd School of Music also launched the Music, Mind and Body Lab, an interdisciplinary hub that brings artists and scientists together to study the "intersection of the arts, neuroscience and the medical humanities." Read more here.

Your data center is either closer than you think or much farther away

houston voices

A new study shows why some facilities cluster in cities for speed and access, while others move to rural regions in search of scale and lower costs. Based on research by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard).

Key findings:

  • Third-party colocation centers are physical facilities in close proximity to firms that use them, while cloud providers operate large data centers from a distance and sell access to virtualized computing resources as on‑demand services over the internet.
  • Hospitals and financial firms often require urban third-party centers for low latency and regulatory compliance, while batch processing and many AI workloads can operate more efficiently from lower-cost cloud hubs.
  • For policymakers trying to attract data centers, access to reliable power, water and high-capacity internet matter more than tax incentives.

Recent outages and the surge in AI-driven computing have made data center siting decisions more consequential than ever, especially as energy and water constraints tighten. Communities invest public dollars on the promise of jobs and growth, while firms weigh long-term commitments to land, power and connectivity.

Against that backdrop, a critical question comes into focus: Where do data centers get built — and what actually drives those decisions?

A new study by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard Business School) provides the first large-scale statistical analysis of data center location strategies across the United States. It offers policymakers and firms a clearer starting point for understanding how different types of data centers respond to economic and strategic incentives.

Forthcoming in the journal Strategy Science, the study examines two major types of infrastructure: third-party colocation centers that lease server space to multiple firms, and hyperscale cloud centers owned by providers like Amazon, Google and Microsoft.

Two Models, Two Location Strategies

The study draws on pre-pandemic data from 2018 and 2019, a period of relative geographic stability in supply and demand. This window gives researchers a clean baseline before remote work, AI demand and new infrastructure pressures began reshaping internet traffic patterns.

The findings show that data centers follow a bifurcated geography. Third-party centers cluster in dense urban markets, where buyers prioritize proximity to customers despite higher land and operating costs. Cloud providers, by contrast, concentrate massive sites in a small number of lower-density regions, where electricity, land and construction are cheaper and economies of scale are easier to achieve.

Third-party data centers, in other words, follow demand. They locate in urban markets where firms in finance, healthcare and IT value low latency, secure storage, and compliance with regulatory standards.

Using county-level data, the researchers modeled how population density, industry mix and operating costs predict where new centers enter. Every U.S. metro with more than 700,000 residents had at least one third-party provider, while many mid-sized cities had none.

ImageThis pattern challenges common assumptions. Third-party facilities are more distributed across urban America than prevailing narratives suggest.

Customer proximity matters because some sectors cannot absorb delay. In critical operations, even slight pauses can have real consequences. For hospital systems, lag can affect performance and risk exposure. And in high-frequency trading, milliseconds can determine whether value is captured or lost in a transaction.

“For industries where speed is everything, being too far from the physical infrastructure can meaningfully affect performance and risk,” Pan Fang says. “Proximity isn’t optional for sectors that can’t absorb delay.”

The Economics of Distance

For cloud providers, the picture looks very different. Their decisions follow a logic shaped primarily by cost and scale. Because cloud services can be delivered from afar, firms tend to build enormous sites in low-density regions where power is cheap and land is abundant.

These facilities can draw hundreds of megawatts of electricity and operate with far fewer employees than urban centers. “The cloud can serve almost anywhere,” Pan Fang says, “so location is a question of cost before geography.”

The study finds that cloud infrastructure clusters around network backbones and energy economics, not talent pools. Well-known hubs like Ashburn, Virginia — often called “Data Center Alley” — reflect this logic, having benefited from early network infrastructure that made them natural convergence points for digital traffic.

Local governments often try to lure data centers with tax incentives, betting they will create high-tech jobs. But the study suggests other factors matter more to cloud providers, including construction costs, network connectivity and access to reliable, affordable electricity.

When cloud centers need a local presence, distance can sometimes become a constraint. Providers often address this by working alongside third-party operators. “Third-party centers can complement cloud firms when they need a foothold closer to customers,” Pan Fang says.

That hybrid pattern — massive regional hubs complementing strategic colocation — may define the next phase of data center growth.

Looking ahead, shifts in remote work, climate resilience, energy prices and AI-driven computing may reshape where new facilities go. Some workloads may move closer to users, while others may consolidate into large rural hubs. Emerging data-sovereignty rules could also redirect investment beyond the United States.

“The cloud feels weightless,” Pan Fang says, “but it rests on real choices about land, power and proximity.”

---

This article originally appeared on Rice Business Wisdom. Written by Scott Pett.

Pan Fang and Greenstein (2025). “Where the Cloud Rests: The Economic Geography of Data Centers,” forthcoming in Strategy Science.