Luminostics, which was founded out of a lab at UH, received NIH grant to produce its COVID-19 rapid antigen test. Photo courtesy of Luminostics

A Silicon Valley startup with Houston roots is helping tackle the COVID-19 pandemic with its smartphone-based coronavirus test.

Milpitas, California-based Luminostics, a University of Houston spinout, is producing millions of its Clip COVID Rapid Antigen Test for U.S. consumers after receiving emergency authorization for the product in December. The emergency approval closely followed the National Institutes of Health awarding a $26.1 million contract to Luminostics to speed up development of the coronavirus test. According to a news release from UH, Luminostics is working on an affordable next generation hardware system to reach the mass over-the-counter market at scale.

Chemical engineers and UH alumni Bala Raja, the CEO, and Andrew Paterson, the chief technology officer, began forming their company in the UH lab of Richard Willson, a professor of chemical and biomolecular engineering and professor of biochemical and biophysical sciences.

The technology developed in the UH lab aims to equip consumers with rapid self-diagnostic tests for the flu, HIV, herpes, and other conditions by detecting the presence of bacteria, viruses, small molecules, hormones, and proteins. But Raja and Paterson put that strategy on hold last year and pivoted to re-engineering their technology for COVID-19 testing. The result: the Clip COVID Rapid Antigen Test.

"When we realized that COVID wasn't just a bad flu and that it was actually gonna go crazy and affect as many people as it has, we decided that everything we've done could be very quickly repurposed to make two different tests," Raja told Inc. magazine in April.

UH alumni Andrew Paterson and Bala Raja are co-founders of Luminostics. Photo via UH.edu

As UH explains, the Clip COVID test relies on a nasal swab, a smartphone clip, and glow-in-the-dark nanoparticles to detect a coronavirus infection within 30 minutes. In the phone, an image processor measures the intensity of the luminescence signal. If the signal is strong enough, the result is positive. If it's weak, the result is negative.

"We live in a world where you can have all your basic necessities delivered to your home through an app, and yet this pandemic has exposed how far behind the diagnostics industry lags compared to consumer technology and the convenience economy," Paterson tells UH.

Funding from the National Institutes of Health, venture capital firm Khosla Ventures, investment firm Lynette Capital, and startup accelerator Y Combinator has helped support the Clip COVID Rapid Antigen Test. The startup entered the Y Combinator program in 2016, a year after Raja and Paterson established Luminostics.

In April 2020, French pharmaceutical giant Sanofi said it was exploring a collaboration with Luminostics on the COVID-19 test.

"The diagnostics industry is saturated with products that cater to big, centralized labs or testing in the doctor's office," Paterson says. "There are many applications where it does make sense to do testing in a centralized lab, but there are dozens of other applications where there should be home-tests and there are not, because few companies have tried to take on the technical and regulatory challenges with developing home-testing."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.