Early and effective stakeholder outreach is a key part of a successful project. Getty Images

Often times we think of technology as innovation. But innovation and the success derived from it is not always about technological advances.

Technological advances have driven innovation in all sectors of our economy. Technology and social media have driven social change and changed how stakeholders— the public and outside influencers — impact infrastructure and construction projects, and how they advocate with policy leaders. This includes the energy, utilities, infrastructure, real estate projects, and manufacturing industries.

Often times the innovation from technology is about a new way of thinking and how one adapts to, works with, and embraces technology and how it impacts a business or an industry. It is about a willingness to do things differently because technology now drives us to think creatively and differently than in the past. It is taking a new approach to how one manages risk, solves problems and meets the challenges facing a business or an industry.

Technology has changed how we communicate as a culture. It has changed how the public communicates with business and how business has to communicate with the public. Because of the growth and influence of social media in our culture, business must now mange a new kind of risk in the risk register of a project. It has to change how it interacts and communicates with stakeholders. It has to be more attentive and listen actively compared to how it operated in the past. Gone are the days when a project manager, private equity firm/investor or company developing a project can "keep their head down so they don't get shot at."

I listed the many industries that are impacted by social media. There is no better example of an industry that has had to change and use innovative and new ways of communicating due to technology. Regardless of the energy project, the development of oil & gas, building a pipeline, new utility lines, a refinery or chemical facility the industry now has to assess who their stakeholders are, listen to them attentively, and develop a strategic plan for outreach. If a company changes how they interact with stakeholders the associated risks will be minimized, mitigated and/or reduced.

There are a plethora of energy projects I can list that highlight how a business failed to innovate in response to how they failed to adapt to, work with and embrace the technology of social media and how it impacts them. One project sums it up, Keystone.

Effective stakeholder outreach has four parts: identification, analysis, prioritization and engagement.

Identification
The first step is to identify the stakeholders. This includes those who will be directly or indirectly impacted such as local, state and federal political leaders, NGOs, media, faith-based groups, landowners, civic leaders, nearby businesses and advocacy groups.

Analysis
The analysis is an evaluation of possible risks related to the stakeholders and the community where the project is planned such as stakeholders who might be opposed to the project, have concerns or be able to influence the process in any way. Have there been issues in the community or legislative bodies that might have a negative impact?

Prioritization
Prioritization is the process of taking the results from the analysis of stakeholders and determining what risks or issues exist. These risks are ranked. Strategies and tactics are developed to address and mitigate them. Finally, a determination is made regarding how and when to communicate with stakeholders.

Engagement
Engagement is the final part of stakeholder outreach. This is the process of communicating with stakeholders to explain the project and how they will be impacted. It will also serve as an opportunity to solicit feedback and insight as well as to continue analyzing risks from stakeholders.

Early and effective stakeholder outreach is a key part of a successful project. It is a new and innovative way of thinking about how to understand and mitigate project risk. It is a willingness to change because technology has shifted how our culture communicates, advocates and engages with business, policy leaders and one another.

------

Andrew Biar is founder and president of Strategic Public Affairs,a government relations and PR/communications firm based in Houston.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston organizations launch collaborative center to boost cancer outcomes

new to HOU

Rice University's new Synthesis X Center officially launched last month to bring together experts in cancer care and chemistry.

The center was born out of what started about seven years ago as informal meetings between Rice chemist Han Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine. The level of collaboration between the two teams has grown significantly over the years, and monthly meetings now draw about 100 participants from across disciplines, fields and Houston-based organizations, according to a statement from Rice.

Researchers at the new SynthX Center will aim to turn fundamental research into clinical applications and make precision adjustments to drug properties and molecules. It will focus on improving cancer outcomes by looking at an array of factors, including prevention and detection, immunotherapies, the use of artificial intelligence to speed drug discovery and development, and several other topics.

"At Rice, we are strong on the fundamental side of research in organic chemistry, chemical biology, bioengineering and nanomaterials,” Xiao says in the statement. “Starting at the laboratory bench, we can synthesize therapeutic molecules and proteins with atom-level precision, offering immense potential for real-world applications at the bedside ... But the clinicians and fundamental researchers don’t have a lot of time to talk and to exchange ideas, so SynthX wants to serve as the bridge and help make these connections.”

SynthX plans to issue its first merit-based seed grants to teams with representatives from Baylor and Rice this month.

With this recognition from Rice, the teams from Xiao's lab and the TMC will also be able to expand and formalize their programs. They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

“I am confident that the SynthX Center will be a great resource for both students and faculty who seek to translate discoveries from fundamental chemical research into medical applications that improve people’s lives,” Thomas Killian, dean of the Wiess School of Natural Sciences, says in the release.

Rice announced that it had invested in four other research centers along with SynthX last month. The other centers include the Center for Coastal Futures and Adaptive Resilience, the Center for Environmental Studies, the Center for Latin American and Latinx Studies and the Rice Center for Nanoscale Imaging Sciences.

Earlier this year, Rice also announced its first-ever recipients of its One Small Step Grant program, funded by its Office of Innovation. The program will provide funding to faculty working on "promising projects with commercial potential," according to the website.

Houston physicist scores $15.5M grant for high-energy nuclear physics research

FUTURE OF PHYSICS

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

The Rice team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas. Photo via Rice.edu

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

------

This article originally ran on EnergyCapital.