One of the winning teams at Climathon has an idea for a microgrid system in Houston's emerging innovation corridor. Photo via houston.org

More than 6,000 participants in 145 cities around the world gathered virtually for last year's Climathon, a global event put on by Impact Hub Houston to unite innovators and collaborate on climate solutions. When Winter Storm Uri left the Texas energy grid in a state of crisis, one Climathon Houston team's proposal for energy reliability became all the more important.

Last year, the City of Houston unveiled its first Climate Action Plan to address the city's challenges and strive to lead the energy transition. It was the perfect roadmap for Climathon Houston, a hackathon where eleven teams gathered to develop and pitch a concept to align with the city's new plan.

Of the three winning teams, one idea was prescient in its approach to energy. Six energy-focused Texans drew up plans for InnoGrid, a cost-effective strategy to build the first microgrid in Houston. What started as a pitch has become a developed proposal gaining collaborator and city interest in the wake of Uri.

Bryan Gottfried, Edward D. Pettitt II, Andi Littlejohn, Paresh Patel, Ben Jawdat, and Gavin Dillingham created InnoGrid to to help achieve the CAP's energy transition and net-zero emissions goals. With climate events increasing rapidly, the team of innovators saw an opportunity to create a sustainable solution — the first Houston microgrid.

In just an hour and a half of brainstorming, the team sought to create a similar model to Austin's Whisper Valley microgrid — a project that's currently in development. While Whisper Valley is a master plan community, the team wanted to create a microgrid to support a larger picture: the city of Houston.

"I had been following transactive energy models [such as] peer-to-peer electricity trading like Brooklyn Microgrid/LO3 Energy and Power Ledger since their inception. This inspired my vision for a novel microgrid that would demonstrate such technologies in the energy capital of the world that is otherwise primarily focused on oil and gas, and natural resources," explains Patel, founder and CEO of e^2: Equitable Energy. 

When Pettitt joined the group, he proposed the growing Houston Innovation Corridor as the home to InnoGrid. The four-mile stretch between the Texas Medical Center and Downtown is already home to green technology, making it an ideal fit.

"You're going into an area that was already being redeveloped and had this innovation kind of mentality already," explains Gottfried, a geoscientist and current MBA student at University of Houston Bauer College of Business.

After winning Climathon Houston, the team continued to meet weekly in hopes of making InnoGrid a reality.

The case for a microgrid

The InnoGrid team started with the goal of making energy reliable and resilient in the face of climate change. While previous storms like Hurricane Ike have left millions of Texans without power, Winter Storm Uri was one of the most destructive tragedies to face Texas. The unexpected February storm left 4.5 million Texans without electricity and resulted in at least 111 deaths.

As InnoGrid's team members struggled with burst pipes and loss of power, the team juggled the task of submitting a grant application to the Department of Energy during a catastrophic winter storm. The timing was not lost on them.

"It underscored the need for us to do something like this," shares Gottfried.

To understand how impactful a Houston microgrid can be, you first must understand how a microgrid works. A microgrid is a local energy grid made of a network of generators combined with energy storage. The microgrid has control capability, meaning it can disconnect from a macro grid and run autonomously.

Ultimately, microgrids can provide reliability and drive down carbon emissions. Using smart meters, the grids can even provide real-time energy data to show the inflow and outflow of electricity. In the instance a microgrid does go down, it only affects the community — not the entire state. Likewise, during a power outage to the main grid, a microgrid can break away and run on its own.

Microgrids have been deployed by other cities to mitigate the physical and economic risks caused by power outages, but the use of a project like InnoGrid feels especially timely given recent events and the limitations of the Texas Interconnect.

The Texas grid is isolated by choice, separated from the eastern and western interconnects. Texas' isolated energy grid resulted in a massive failure, proving deregulation can certainly backfire. Updating the electric grid has an expensive price tag, but microgrids show a promising and cost-effective model for the future.

"I thought if microgrids and mini-grids are enabling millions in off-grid frontier markets at the base of the pyramid [like Asia, Sub-Saharan Africa, etc.] to essentially leapfrog legacy energy infrastructure, why should we not upgrade our aging power system with the latest tech that is digitalized, decarbonized, decentralized/distributed, and democratized at the top of the pyramid," asks Patel.

Many hospitals, universities, and large technology firms have already established their own microgrids to protect equipment and provide safety. Still, smaller businesses and homes in the community can suffer during outages.

InnoGrid's proposal seeks to use existing and proven renewable energy sources like wind, solar and geothermal energy. The storage technologies used would include battery, kinetic, compressed air, and geomechanical pumped storage.

"From the perspective of an early-stage hardware startup, one of the most important things is finding a way to validate and test your technology," explains Jawdat, founder and CEO of Revterra and adviser to the InnoGrid team. He explains that the microgrid "can also be a testbed for new technologies, specifically, new energy storage technologies," through potential partnerships with companies like Greentown Labs, which is opening its Houston location soon.

Battling inequity 

While the outlook for a community microgrid is enticing, there are also challenges to address. One key challenge is inequity, which is a key focus of Pettitt who was drawn to the team's goal of providing stability for companies and residences in Houston.

Pettitt, who is seeking a Ph.D. in urban planning and environmental policy at Texas Southern University, has a background in public health and frequently works with the Houston Coalition for Equitable Development without Displacement. "I'm really looking at the intersection of the built environment and how to make cities healthier for its residents," he shares.

"A lot of companies are trying to prevent this climate crisis where we have climate refugees that can't live in certain areas because of ecological damage. But in the process, we don't want to create economic refugees from the gentrification of bringing all of these companies and higher-wage jobs into an area without providing folks the ability to benefit from those jobs and the positive externalities of that development," explains Pettitt.

The InnoGrid would plan to provide positive externalities in the form of energy subsidies and potentially even job training for people who want to work on the grid.

Power to the consumer

Much like the gamification in feel-good fitness trackers and e-learning tools, reward systems can inspire friendly competition and community engagement. InnoGrid's proposal seeks to challenge other major cities to build their own grids and compete with a gamified system.

The Innovation Corridor is currently undergoing major redevelopment, the first 16 acres of which are being developed by Rice Management Company and will be anchored by The Ion, which is opening soon. The timing of this redevelopment would allow a prospective project like InnoGrid to build in visual and interactive aspects that depict energy usage and carbon offsetting.

The microgrid's statistics would also engage Houstonians by sharing up-to-date data through dashboards, apps, and even billboards to track Houston's carbon footprint. Pettitt paints a picture of interactive sidewalk structures, leaderboards, and digital billboards in the public realm to showcase how energy is used day-to-day. The team hopes to build positive feedback cycles that encourage tenants and building owners to be more energy-efficient.

"If we're having an Innovation Corridor, an innovation district, I think the built environment should be innovative too," explains Pettitt.

The future of InnoGrid

Every innovation has to start somewhere. While InnoGrid is in its early stages, the team is working to establish partners and collaborators to make the project a reality.

Inspired by projects like the Brooklyn Microgrid, InnoGrid is in the process of pursuing partnerships with utilities and energy retailers to form a dynamic energy marketplace that pools local distributed energy resources. The team hopes to collaborate with microgrid experts from around the nation like Schneider Electric and SunPower. Other potential collaborators include The Ion, CenterPoint, Greentown Labs, and Rice Management Company.

Can Houston remain the energy capital of the world as it transitions to a net-zero energy future? The InnoGrid team wants to make that happen. The argument for a microgrid in Houston feels even more fitting when you look at the landscape.

"If we are going to create an innovative microgrid that also functions as a testbed for innovators and startups, [we] have proximity to some of the biggest utilities and power generation players right in that sector," explains Patel, who is also an inaugural member of Greentown Labs Houston.

"The microgrid itself is not novel. I think what makes it compelling is to situate that right here in the heart of the energy capital as we, again, reincarnate as the energy transition capital world," Patel continues.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas cybersecurity co. expands unique train-to-hire model to Houston

job search

It’s increasingly more difficult to ensure the confidentiality, integrity, and availability of proprietary data and information in the ever-changing, ever-evolving digital world.

Cyberattacks, including malware, phishing, and ransomware, are becoming increasingly common and sophisticated, posing a consistent threat to a company’s sustainability and bottom line.

To combat that trend, Nukudo, a San Antonio-based cybersecurity workforce development company, is expanding its initiative to bridge the global cybersecurity talent gap through immersive training and job placement to Houston.

“We saw that there was a need in the market because there's a shortage of skilled manpower within the cybersecurity industry and other digital domains,” says Dean Gefen, CEO of NukuDo. “So, our initial goal was to take a large pool of people and then make them to be fully operational in cybersecurity in the shortest amount of time.”

The company refers to the plan as the “training-to-employment model,” which focuses on providing structured training to select individuals who then acquire the skills and knowledge necessary to secure and maintain fruitful careers.

The company identifies potential associates through its proprietary aptitude test, which recognizes individuals who possess the innate technical acumen and potential for success in various cybersecurity roles, regardless of their level of education.

“We take in people from all walks of life, meaning the program is purely based on the associate’s potential,” Gefen says. “We have people who were previously aircraft engineers, teachers, graphic designers, lawyers, insurance agents and so forth.”

Once selected, associates are trained by cybersecurity experts while gaining hands-on experience through scenario-based learning, enabling them to be deployed immediately as fully operational cybersecurity professionals.

The program training lasts just six months—all paid—followed by three years of guaranteed employment with NukuDo.

While in training, associates are paid $ 4,000 per month; then, they’re compensated by nearly double that amount over the next three years, ultimately pushing their salaries to well into the six figures after completing the entire commitment.

In addition to fostering a diverse talent pipeline in the cybersecurity field, NukuDo is creating a comprehensive solution to address the growing shortage of technical talent in the global workforce.

And arming people with new marketable skills has a litany of benefits, both professional and personal, Gefen says.

“Sometimes, we have associates who go on to make five times their previous salary,” says Gefen. “Add to that fact that we had someone that had a very difficult life beforehand and we were able to put him on a different path. That really hits home for us that we are making a difference.

Nulkudo currently has partnerships with companies such as Accenture Singapore and Singapore Airlines. Gefen says he and his team plans to have a new class of associates begin training every month by next year and take the model to the Texas Triangle (Houston, Austin and Dallas)—then possibly nationwide.

“The great thing about our program is that we train people above the level of possible threat of replacement by artificial intelligence,” Gefen says. “But what we are also doing, and this is due to requirements that we have received from clients that are already hiring our cyber professionals, is that we are now starting to deliver AI engineers and data scientists in other domains.”

“That means that we have added more programs to our cybersecurity program. So, we're also training people in data science and machine learning,” he continues.

All interested candidates for the program should be aware that a college degree is not required. NukuDo is genuinely interested in talented individuals, regardless of their background.

“The minimum that we are asking for is high school graduates,” Gefen says. “They don't need to have a college degree; they just need to have aptitude. And, of course, they need to be hungry to make this change.”

2 Houston universities declared among world’s best in 2026 rankings

Declaring the Best

Two Houston universities are in a class of their own, earning top spots on a new global ranking of the world's best universities.

Rice University and University of Houston are among the top 1,200 schools included in the QS World University Rankings 2026. Ten more schools across Texas make the list.

QS (Quacquarelli Symonds), a London-based provider of higher education data and analytics, compiles the prestigious list each year; the 2026 edition includes more than 1,500 universities from around the world. Factors used to rank the schools include academic reputation; employer reputation; faculty-student ratio; faculty research; and international research, students, and faculty.

In Texas, University of Texas at Austin lands at No. 1 in the state, No. 20 in the U.S., and No. 68 globally.

Houston's Rice University is close behind as Texas' No. 2 school. It ranks 29th in the U.S. and No. 119 in the world. Unlike UT, which fell two spots globally this year (from No. 66 to 68), Rice climbed up the charts, moving from 141st last year to No. 119.

University of Houston impresses as Texas' 4th highest-ranked school. It lands at No. 80 in the U.S. and No. 556 globally, also climbing about 100 spots up the chart.

Rice and UH are on a roll in regional, national, and international rankings this year.

Rice earned top-15 national rankings by both Niche.com and Forbes last fall. Rice claimed No. 1 and UH ranked No. 8 in Texas in U.S. News & World Report's 2025 rankings. Rice also topped WalletHub's 2025 list of the best colleges and universities in Texas for 2025.

More recently, in April, both UH and Rice made U.S. News' 2025 list of top grad schools.

In all, 192 U.S. universities made the 2026 QS World University Rankings — the most of any country. Topping the global list is the Massachusetts Institute of Technology (MIT).

“The results show that while U.S. higher education remains the global leader, its dominance is increasingly challenged by fast-rising emerging systems,” says the QS World University Rankings report. “A decade ago, 32 American universities [were] featured in the world’s top 100; today, that number has dropped to 26, and only 11 of these institutions have improved their position this year."

The 12 Texas universities that appear in the QS World University Rankings 2026 list are:

  • University of Texas at Austin, No. 20 in the U.S. and No. 68 in the world (down from No. 66 last year).
  • Rice University, No. 29 in the U.S. and No. 119 in the world (up from No. 141 last year).
  • Texas A&M University, No. 32 in the U.S. and No. 144 in the world (up from No. 154 last year).
  • University of Houston, No. 80 in the U.S. and No. 556 in the world (up from 651-660 last year).
  • University of Texas at Dallas, No. 85 in the U.S. and No. 597 in the world (down from 596 last year).
  • Texas Tech University, No. 104 in the U.S. and No. 731-740 in the world (unchanged from last year).
  • University of North Texas, No. 123 in the U.S. and No. 901-950 in the world (up from 1,001-1,200 last year)
  • Baylor University, tied for No. 136 in the U.S. and at No. 1,001-1,200 in the world (unchanged from last year).
  • Southern Methodist University, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas Arlington, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas at San Antonio, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas at El Paso, No. 172 in the U.S. and at 1,201-1,400 in the world (down from 1,001-1,200 last year).
---

This article originally appeared on CultureMap.com.

Houston students develop new device to prepare astronauts for outer space

space race

Rice University students from the George R. Brown School of Engineering and Computing designed a space exercise harness that is comfortable, responsive, and adaptable and has the potential to assist with complex and demanding spacewalks.

A group of students—Emily Yao, Nikhil Ashri, Jose Noriega, Ben Bridges and graduate student Jack Kalicak—mentored by assistant professor of mechanical engineering Vanessa Sanchez, modernized harnesses that astronauts use to perform rigorous exercises. The harnesses are particularly important in preparing astronauts for a reduced-gravity space environment, where human muscles and bones atrophy faster than they do on Earth. However, traditional versions of the harnesses had many limitations that included chafing and bruising.

The new harnesses include sensors for astronauts to customize their workouts by using real-time data and feedback. An additional two sensors measure astronauts’ comfort and exercise performance based on temperature and humidity changes during exercise and load distribution at common pressure points.

“Our student-led team addressed this issue by adding pneumatic padding that offers a customized fit, distributes pressure over a large surface area to reduce discomfort or injuries and also seamlessly adapts to load shifts — all of which together improved astronauts’ performance,” Sanchez said in a news release. “It was very fulfilling to watch these young engineers work together to find innovative and tangible solutions to real-world problems … This innovative adjustable exercise harness transforms how astronauts exercise in space and will significantly improve their health and safety during spaceflights.”

The project was developed in response to a challenge posted by the HumanWorks Lab and Life Science Labs at NASA and NASA Johnson Space Center for the 2025 Technology Collaboration Center’s (TCC) Wearables Workshop and University Challenge, where teams worked to solve problems for industry leaders.

Rice’s adaptive harness won the Best Challenge Response Award. It was funded by the National Science Foundation and Rice’s Office of Undergraduate Research and Inquiry.

“This challenge gave us the freedom to innovate and explore possibilities beyond the current harness technology,” Yao added in the release. “I’m especially proud of how our team worked together to build a working prototype that not only has real-world impact but also provides a foundation that NASA and space companies can build and iterate upon.”