The five-year grant is part of The Howard Hughes Medical Institute's Driving Change initiative, which focuses on breaking down barriers in STEM fields at research universities. Photo via Rice University

Rice University was recently granted $2.5 million to develop programs that make STEM degrees more accessible to students of all walks of life.

The five-year grant is part of The Howard Hughes Medical Institute's Driving Change initiative, which focuses on breaking down barriers in STEM fields at research universities.

Rice is one of six universities to receive the grant this year. According to a statement from Rice, this year's winners were named for making "culture change efforts" within the universities.

“Rice has laid the groundwork for student success, and this funding will allow us to teach math courses in an accessible way that is inclusive to all students and promotes equity in STEM," Amy Dittmar, Howard R. Hughes Provost and executive vice president for academic affairs, says in a statement. "Students who are underrepresented, first-generation college students, Pell grant recipients, women and athletes should have the same opportunities for success as everyone else.”

Other universities in the 2023 cohort include:

  • The University of California, Los Angeles
  • Illinois State University
  • The University of Massachusetts, Amherst
  • Rice University
  • Rutgers University – Camden
  • The University of Vermont

The first group of six universities awarded a Driving Change grant were named last year. Awardees are also part of the HHMI Driving Change Learning Community of 38 institutions that aim to create more inclusive environments.

“Each of this year’s grantee institutions has demonstrated their dedication to carrying out critical, intensive work for the betterment of the wider world of STEM and STEM education,” Sarah Simmons, HHMI program lead for Driving Change, says in a statement. “Part of this work includes a thorough self-study to ensure that each institution identifies its own unique needs. We are honored to be a part of a community with so many change-makers who are driven by the goal of making science and science education accessible to everyone.”

The grant was secured by Rice team members Janet Braam, Margaret Beier, Alex Byrd, Liz Eich, Dereth Phillips, Caroline Quenemoen, Renata Ramos, Matt Taylor and Tony Varilly Alvarado.

Earlier this fall, Rice also announced the Liu Idea Lab for Innovation and Entrepreneurship, or Lilie, which recruited 11 entrepreneurs to the council with Houston ties to support “promising entrepreneurial programs for students, research staff and faculty.” Each has agreed to donate time and money to the university’s entrepreneurship programs.

That same month, Rice teamed up with Houston Methodist to open the new Center for Human Performance.

The 250,000-square-foot building is the new home for four key research areas at Rice: advanced materials, quantum science and computing, urban research and innovation, and the energy transition. Photo courtesy of Rice

University opens its newest, largest campus research facility in Houston

research @ rice

As the academic year officially kicks off, professors have started moving in and Rice University has opened its largest core campus research facility, The Ralph S. O’Connor Building for Engineering and Science.

The 250,000-square-foot building is the new home for four key research areas at Rice: advanced materials, quantum science and computing, urban research and innovation, and the energy transition. The university aims for the space to foster collaboration and innovation between the disciplines.

"To me it really speaks to where Rice wants to go as we grow our research endeavors on campus," Michael Wong, Chair of the Department of Chemical and Biomolecular Engineering, whose lab is located in the new facility, said in a video from Rice. "It has to be a mix of engineering and science to do great things. We don’t want to do good things, we want to do great things. And this building will allow us to do that."

At $152 million, the state-of-the-art facility features five floors of labs, classrooms and seminar rooms. Common spaces and a cafe encourage communication between departments, and the top level is home to a reception suite and outdoor terrace with views of the Houston skyline.

It replaces 1940s-era Abercrombie Engineering Laboratory on campus, which was demolished in 2021 to make way for the new facilities. The iconic sculpture "Energy" by Rice alumnus William McVey that was part of the original building was preserved with plans to incorporate it into the new space.

The new building will be dedicated to its namesake Ralph O'Connor on Sept. 14 in Rice's engineering quad at 3 p.m. O'Connor, a Johns Hopkins University grad, became a fan Rice when he moved to Houston to work in the energy industry in the 1950s.

The former president and CEO of the Highland Oil Company and founder of Ralph S. O’Connor & Associates left the university $57 million from his estate after he died in 2018. The gift was the largest donation from an estate in Rice's history and brought his donations to the university, including those to many buildings on campus and endowments and scholarships, to a total of $85 million.

“How fitting that this building will be named after Ralph O’Connor,” Rice President Reginald DesRoches said in a statement last summer. “He was a man who always looked to the future, and the future is what this new engineering and science building is all about. Discoveries made within those walls could transform the world. Anybody who knew Ralph O’Connor knows he would have loved that.”

The dedication event will be open to the public. It will feature remarks from DesRoches, as well as Rice Provost Amy Dittmar, Dean of the Wiess School of Natural Sciences Thomas Killian, Chair of the Rice Board of Trustees Robert Ladd and Dean of the George R. Brown School of Engineering Luay Nakhleh. A reception and tours of the new building will follow.

Lane Martin will lead the Rice Advanced Materials Institute beginning this summer. Photo courtesy of Rice

Rice University announces leader of new materials and nanotechnology institute

at the helm

A recently established institute at Rice University has revealed its new leader.

The Rice Advanced Materials Institute has named Lane Martin as director. Martin will also serve as Welch Professor of Materials Science and NanoEngineering in the George R. Brown School of Engineering. He begins both roles on July 1.

“Lane is everything we expect our faculty to be — hard-working, committed to excellence, dedicated to students and collaborative across disciplines,” says Howard R. Hughes Provost Amy Dittmar in a news release. “I look forward to seeing Rice faculty and students reap the benefits of his leadership.”

Prior to his appointment at Rice, Martin was the chancellor’s professor of materials science and engineering at the University of California, Berkeley. He also served as chair of the materials science and engineering department, faculty scientist in the material sciences division of the Lawrence Berkeley National Laboratory, and co-director of the Collaborative for Hierarchical Agile and Responsive Materials, according to the release.

“I had the privilege of mentoring Lane when he was a doctoral student at Berkeley,” says Ramamoorthy Ramesh, vice president for research, professor of materials science and nanoengineering and professor of physics and astronomy. “He is a gifted scientist with the boldness and vision to build this new institute into a research powerhouse.”

The new institute was created following a $100 million gift from Houston-based Welch Foundation. It will bring together chemistry, materials science, machine learning, and artificial intelligence to revolutionize the future of industry.

“This institute will keep Rice at the forefront of high-impact research related to energy transition, advanced materials and future computing,” says Luay Nakhleh, the William and Stephanie Sick Dean of the school, in the release. “It will empower our faculty and students to help solve some of the most pressing problems of our day.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Pioneering Houston biotech startup expands to Brazil for next phase

On the Move

Houston biotech company Cemvita has expanded into Brazil. The company officially established a new subsidiary in the country under the same name.

According to an announcement made earlier this month, the expansion aims to capitalize on Brazil’s progressive regulatory framework, including Brazil’s Fuel of the Future Law, which was enacted in 2024. The company said the expansion also aims to coincide with the 2025 COP30, the UN’s climate change conference, which will be hosted in Brazil in November.

Cemvita utilizes synthetic biology to transform carbon emissions into valuable bio-based chemicals.

“For decades Brazil has pioneered the bioeconomy, and now the time has come to create the future of the circular bioeconomy,” Moji Karimi, CEO of Cemvita, said in a news release. “Our vision is to combine the innovation Cemvita is known for with Brazil’s expertise and resources to create an ecosystem where waste becomes opportunity and sustainability drives growth. By joining forces with Brazilian partners, Cemvita aims to build on Brazil’s storied history in the bioeconomy while laying the groundwork for a circular and sustainable future.”

The Fuel of the Future Law mandates an increase in the biodiesel content of diesel fuel, starting from 15 percent in March and increasing to 20 percent by 2030. It also requires the adoption of Sustainable Aviation Fuel (SAF) and for domestic flights to reduce greenhouse gas emissions by 1 percent starting in 2027, growing to 10 percent reduction by 2037.

Cemvita agreed to a 20-year contract that specified it would supply up to 50 million gallons of SAF annually to United Airlines in 2023.

"This is all made possible by our innovative technology, which transforms carbon waste into value,” Marcio Da Silva, VP of Innovation, said in a news release. “Unlike traditional methods, it requires neither a large land footprint nor clean freshwater, ensuring minimal environmental impact. At the same time, it produces high-value green chemicals—such as sustainable oils and biofuels—without competing with the critical resources needed for food production."

In 2024, Cemvita became capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. As a result, Cemvita quadrupled output at its Houston plant. The company had originally planned to reach this milestone in 2029.

---

This story originally appeared on our sister site, EnergyCapitalHTX.

Texas universities develop innovative open-source platform for cell analysis

picture this

What do labs do when faced with large amounts of imaging data? Powerful cloud computing systems have long been the answer to that question, but a new riposte comes from SPACe.

That’s the name of a new open-source image analysis platform designed by researchers at Baylor College of Medicine, Texas A&M University and the University of Houston.

SPACe, or Swift Phenotypic Analysis of Cells, was created to be used on standard computers that even small labs can access, meaning cellular analysis using images produced through cell painting has a lower barrier to entry than ever before.

“The pharmaceutical industry has been accustomed to simplifying complex data into single metrics. This platform allows us to shift away from that approach and instead capture the full diversity of cellular responses, providing richer, more informative data that can reveal new avenues for drug development,” Michael Mancini, professor of molecular and cellular biology and director of the Gulf Coast Consortium Center for Advanced Microscopy and Image Informatics co-located at Baylor College of Medicine and TAMU Institute for Bioscience and Technology.

SPACe is not only accessible because of its less substantial computational needs. Because the platform is open-source, it’s available to anyone who needs it. And it can be used by academic and pharmaceutical researchers alike.

“The platform allows for the identification of non-toxic effects of drugs, such as alterations in cell shape or effects on specific organelles, which are often overlooked by traditional assays that focus largely on cell viability,” says Fabio Stossi, currently a senior scientist with St. Jude Children’s Research Hospital, the lead author who was at Baylor during the development of SPACe.

The platform is a better means than ever of analyzing thousands of individual cells through automated imaging platforms, thereby better capturing the variability of biological processes. Through that, SPACe allows scientists an enhanced understanding of the interactions between drugs and cells, and does it on standard computers, translating to scientists performing large-scale drug screenings with greater ease.

"This tool could be a game-changer in how we understand cellular biology and discover new drugs. By capturing the full complexity of cellular responses, we are opening new doors for drug discovery that go beyond toxicity,” says Stossi.

And the fact that it’s open-source allows scientists to access SPACe for free right now. Researchers interested in using the platform can access it through Github at github.com/dlabate/SPACe. This early version could already make waves in research, but the team also plans to continually improve their product with the help of collaborations with other institutions.