From robotics to artificial intelligence, here's how Amazon gets its products to Houstonians in record time. Photo by Natalie Harms/InnovationMap

How Amazon's Houston fulfillment center uses AI technology and robotics to move millions of products

Prime time

Last summer, Amazon opened the doors to its North Houston distribution center — one of the company's 50 centers worldwide that uses automation and robotics to fulfill online orders.

The Pinto Business Park facility has millions of products in inventory across four floors. Products that are 25 pounds or less (nothing heavier is stocked at this location) pass through 20 miles of conveyor belts, 1,500 employees, and hundreds of robots.

The center also has daily tours open to the public. We recently visited to see for ourselves the process a product goes through at this Houston plant. From stowing to shipping, here's how packages go from your shopping cart to your front porch.

Starting with stowing 

Natalie Harms/InnovationMap

A product's first step in an Amazon facility is stowing. There's no categorization of the products — it's not like there's one floor for one type of item or anything.

"It's completely randomly stowed," says Donna Beadle, PR specialist for Amazon. "She could be stowing cat food on this floor, and so could somebody on floor two."

An Amazon employee would scan an item and stow it into an empty bin of her choosing — sort of. To prevent confusion, a light projected indicates bins that are off limits to stow the item. The light identifies bins that have similar products. Keeping similar products apart helps prevents mistakes for the employee who later pulls those items once its ordered.

The system also sees where the employee is putting each item, rather than having to scan each item and the bin as well. This is a newer feature — the facility originally opened with hand-held scanners.

"Our next generation workstation is that they don't have to hold that scanner — they have hands free," says Brenda Alford, regional communications manager at Amazon.

Robots on the move

Once the bins are fully stocked, the robot — which is the orange device on the bottom of the yellow bins — moves about the facility by scanning QR codes on the floor.

Should a product fall out, an employee wearing a special vest can enter to retrieve it. That vest will send off a signal to the robots, which will then decrease their speeds and come to a stop when the employee comes close.

"It's an extra measure of safety so that people can interact with the robots and feel safe," says Beadle.

Picking before packing

Natalie Harms/InnovationMap

Once an item is ordered, the bin with that item appears in the pick process at the center. The system tells the Amazon employee which item to grab and which bin to put it in. The bins will have products for multiple different orders — another employee later will separate it out later.

"Often we describe it as a symphony — our technology and our associates working together," Alford says, noting that sometimes the company might receive criticism about using robots over humans. "We can't do this without these humans.

Amazon employees receive their benefits from day one on the job, Beadle says, and they work four, 10-hour days a week.

"We feel like that way they have more time with their families — they get three days off versus two days off. And that gives them time to heal and rest up," she says.

Bin to bin and back again

Natalie Harms/InnovationMap

Once full, the Amazon associate will push the bin onto a series of conveyor belts. The whole facility has 20 miles of conveyor belts — much of which happens overhead.

The bins then zigzag toward the pack process, which is separated to different stations. There are single-product stations and multiple package stations. The system determines where the bin should go, and some stations pack products that are determined to need packing materials, while others do not.

Single-product packaging

Natalie Harms/InnovationMap

At the packing process, the Amazon employee is told which size box to assemble — he or she can grab a bigger box, but they can't select a smaller one. The tape dispenser doles out the correct size of tape for that box automatically.

Once packaged up, a sticker with a barcode is placed on the box. This code will later be used to print the label for shipping. At this point in the process, no personal information has been revealed to anyone. In fact, most packages leave the facility without any personal information being viewed by employees.

In an effort to reduce packing materials, some products are shipped in the container they came in. In that instance, the packer would just place the barcode sticker on the package before sending it on the conveyor belt.

"If we don't need another box for that product, we don't use one," Beadle says. "We work with companies to make that happen, so we don't have to use more boxes if we don't have to."

SLAM 


While the robotics aren't slamming labels on packages, the SLAM process (short for scan, label, apply and manifest) is the first step in the process that includes a customer's personal information. During this process, the barcode is scanned, the package is weighed, and the label is printed and affixed to the package using a puff of air.

A package might be automatically pulled from the line if something seems to be off in the package's weight.

"Say you bought toothpaste, and it says that toothpaste weighs 20 pounds, we know something's wrong," Beadle says. "Like maybe that it was a pack that didn't get separated."

If the package is kicked off, an Amazon associate, called a problem solver, will assess the situation and make it right before returning it to the conveyor belt.

Kicked into gear

Once labeled, all the packages are sent on their final conveyor belt ride. Using a scanning process, the packages are kicked by an automated foot that sends them into a line to be loaded into an Amazon truck.

If a package misses its chute the first time around, it makes the loop again. The system can tell if a package is caught in the loop for whatever reason, and a problem solver might be called to assess the situation.

Down the slide

Natalie Harms/InnovationMap

After being kicked off the belt, the package then slides down a spiral chute that, despite looking like a playground slide, is off limits to any humans wanting to keep their job.

"People ask if you can go down the slide, and we always say that on your last day of work," Beadle jokes.

On to the shipping process

Natalie Harms/InnovationMap

The packages leave the facility in Amazon trucks and head to one more pit stop before making it to the customer.

"They don't go directly to your house after this process," Beadle says. "They go to a sortation center."

This could mean a USPS or UPS stop, but it depends on where the customer lives.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

eyes on clean energy

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

------

This article originally appeared on EnergyCapital.

Houston hospital names leading cancer scientist as new academic head

new hire

Houston Methodist Academic Institute has named cancer clinician and scientist Dr. Jenny Chang as its new executive vice president, president, CEO, and chief academic officer.

Chang was selected following a national search and will succeed Dr. H. Dirk Sostman, who will retire in February after 20 years of leadership. Chang is the director of the Houston Methodist Dr. Mary and Ron Neal Cancer Center and the Emily Herrmann Presidential Distinguished Chair in Cancer Research. She has been with Houston Methodist for 15 years.

Over the last five years, Chang has served as the institute’s chief clinical science officer and is credited with strengthening cancer clinical trials. Her work has focused on therapy-resistant cancer stem cells and their treatment, particularly relating to breast cancer.

Her work has generated more than $35 million in funding for Houston Methodist from organizations like the National Institutes of Health and the National Cancer Institute, according to the health care system. In 2021, Dr. Mary Neal and her husband Ron Neal, whom the cancer center is now named after, donated $25 million to support her and her team’s research on advanced cancer therapy.

In her new role, Chang will work to expand clinical and translational research and education across Houston Methodist in digital health, robotics and bioengineered therapeutics.

“Dr. Chang’s dedication to Houston Methodist is unparalleled,” Dr. Marc L. Boom, Houston Methodist president and CEO, said in a news release. “She is committed to our mission and to helping our patients, and her clinical expertise, research innovation and health care leadership make her the ideal choice for leading our academic mission into an exciting new chapter.”

Chang is a member of the American Association of Cancer Research (AACR) Stand Up to Cancer Scientific Advisory Council. She earned her medical degree from Cambridge University in England and completed fellowship training in medical oncology at the Royal Marsden Hospital/Institute for Cancer Research. She earned her research doctorate from the University of London.

She is also a professor at Weill Cornell Medical School, which is affiliated with the Houston Methodist Academic Institute.

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”

------

This article originally appeared on EnergyCapital.