Jay Manouchehri (left) is now CEO of Fluence Analytics, and co-founder Alex Reed has transitioned to president and chief commercial officer. Photo courtesy of Fluence Analytics

Teamwork makes the dream work, and a Houston-based tech startup is one step closer to its dream team, according to the company's leadership.

Fluence Analytics, which moved its headquarters to the Houston area from New Orleans last year, has named Jay Manouchehri as the company's CEO. Manouchehri has worked in leadership roles within difital transformation at ABB and Honeywell all around the world, as well as in consulting and private equity.

"As you (can see) from Jay's background he is exactly the type of person we need to help take our company the next level," says co-founder Alex Reed. "I think he's gonna be critical as we did this Houston move and go to this next phase of growth and eventually drive to an exit."

Reed has transitioned from CEO to chief commercial officer, but Manouchehri tells InnovationMap the two really lead the company together and balance each other out. Reed says he's focused on commercial product strategy and Manouchehri is leading industrial growth.

“The next step for Fluence is really that we are industrializing our product and getting it into the industrial market," Manouchehri says. "That's exactly why we moved to Houston — it's where a lot of our clients are. We're building up and structure the company in such a manner that it could scale, get the right partnerships, and hire a team to take us to the next level and deliver the technology."

Fluence's technology is changing the game within the polymer space. The industrial and laboratory monitoring solutions — a combination of software and hardware — track and report key data in real time allowing industrial polymer producers to improve process control.

"When I saw what Alex is doing, it wasn't like it's a startup looking for a problem to solve. It's a startup trying to crack a nut that a lot of people in this industry have be in trying for 20 or 30 years and haven't been able to do so," Manouchehri says.

The move to Houston has allowed the company access to new and existing customers within the industry, but also potential acquirers and the company says an exit could be possible over the next few years. Additionally, Houston provides an opportunity to expand into the biomedical space. Recently, Fluence hired a Houston employee to build out this vertical.

"MRNAs and DNAs are all polymers. So, we use the same IP and same technology and do analysis, sensing, and data analytics for the biopharma industry," Manouchehri says. "We actually are pushing that quite strongly. Our client base is growing rapidly."

Another avenue Fluence is excited about is chemical recycling or polymerization recycling. Reed says they are closely watching the traction within the circular economy.

"Imagine taking plastic bottles and being able to recycle them back to the original molecule and then reprocess them into a bottle again," Reed says. "Mechanical recycling is more typical now and has a lot of disadvantages because of the additives and the properties that you get when you melt down all the different types of plastics. (Chemical recycling) would actually allow you to make new plastic from the old plastic, just by taking the original molecule out."

Fluence Analytics, which raised a $7.5 million round led by Energy Innovation Capital last summer, has its headquarters in Stafford, just southwest of Houston.

This week's roundup of Houston innovators includes Sarah Groen of Bell & Bly Travel, Alex Reed of Fluence Analytics, and Bettina Beech of UH. Courtesy photos

3 Houston innovators to know this week

who's who

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — from travel to analytics— recently making headlines in Houston innovation.

Sarah Groen, founder of Bell and Bly Travel

Sarah Groen, travel entrepreneur and longtime Houston tech ecosystem member, joins the Houston Innovators Podcast. Photo courtesy of Bell and Bly Travel

It's been a scary time for travel-related businesses, and Sarah Groen has had to get innovative to maintain her business as a travel adviser. Lucky for Groen, who has a long career in tech and innovation, she had all the right pivots, including offering digital travel packages, launching a new podcast, and more.

"During COVID, a lot of businesses either shutdown or took a pause, but we accelerated," Groen says.

Groen her career on the Houston Innovators Podcast. She also gives some strategic advice for founders — like trusting your gut and reading the signs when it comes to product-market fit — on the podcast. Click here to read more and stream the episode.

Alex Reed, co-founder and CEO of Fluence Analytics

Alex Reed joined InnovationMap for a Q&A on the company's move to Houston and its growth plans. Photo courtesy of Fluence Analytics

Alex Reed watched his father work in the labs on his research as he grew up, but he realized his future wasn't in the lab. Instead, he launched a career in taking that research and turning it into a company.

Founded in 2012 in New Orleans, Fluence Analytics has entered its next phase of growth by moving its headquarters to Houston following a $7.5 million venture capital raise.

We're working with the Houston of today, but also the Houston of tomorrow," Reed tells InnovationMap in a Q&A. Click here to read more.

Bettina Beech, chief population health officer at the University of Houston

Bettina Beech is a newly named AIM-AHEAD coordinating center team member. Photo via UH.edu

The University of Houston has joined in on a national initiative to increase the diversity of artificial intelligence researchers, according to a news release from the school. Unfortunately, AI — designed by humans — mimics human decision making through its choice of algorithms. This means that the same biases humans deal with have made it into the AI decision making too. These gaps can lead to continued disparities and inequities for underrepresented communities especially in regards to health care, job hiring, and more.

"Beyond health care, AI has been used in areas from facial recognition to self-driving cars and beyond, but there is an extreme lack of diversity among the developers of AI/ML tools. Many studies have shown that flawed AI systems and algorithms perpetuate gender and racial biases and have resulted in untoward outcomes," says Bettina Beech, chief population health officer at the University of Houston and newly named AIM-AHEAD coordinating center team member.

The initiative will bring together collaborators and experts across AI and machine learning, health equity research, data science training, data infrastructure and more. The other universities involved include: University of Colorado-Anschutz Medical Center in Aurora; University of California, Los Angeles; Meharry Medical College in Nashville; Morehouse School of Medicine in Atlanta; Johns Hopkins University, and Vanderbilt University Medical Center. Click here to read more.

Alex Reed, co-founder and CEO of Fluence Analytics, joined InnovationMap for a Q&A on the company's move to Houston and its growth plans. Photo courtesy of Fluence Analytics

Fresh off $7.5M funding, this new-to-Houston tech company plans to grow and expand in life science space

q&A

Founded in 2012 in New Orleans, a tech company that provides software and hardware solutions for the chemicals industry has entered its next phase of growth by moving its headquarters to Houston following a $7.5 million venture capital raise.

Fluence Analytics, which announced its recent raise led by Yokogawa Electric Corp. last month, has officially moved to the Houston area. The company's new HQ is in Stafford. Alex Reed, co-founder and CEO of the company, joined InnovationMap for a Q&A about what led up to the move and the future of the company, which includes expanding into the life science field.

InnovationMap: Tell me about Fluence Analytics — what does the technology do and why did you decide to start the company?

Alex Reed: We have developed a patented technology that can optimize chemical production. We basically are able to measure what's happening in real time in a process. Imagine if you're baking a cake, and you follow this recipe and sometimes you get the cake you want, sometimes it's too dry, and sometimes it's not cooked enough. And so the polymers industry, for simplistic terms, has that type of an issue. You don't really know exactly where you're at your equipment behaves differently. Basically, what we're able to do is give them real-time information on what's happening as they're baking the cake so that every time they can get a perfect cake.

We have a software and hardware solution that we install in these plants to get these measurements so that our customers can optimize production — and they want to do that to improve their yield, reduce waste, increase safety, and improve quality. There are a lot of different reasons that companies are interested in our technology and we have managed to grow globally. We have customers in Asia, Europe, and the U.S.

We spun out of Tulane University. It's an interesting story because my dad is the inventor of the technology — he's a physics professor at Tulane. I grew up working in the lab with him literally since the age of 12, and I was super interested in technology and science and saw that he was working with all these chemical companies. They were always very interested in what he was working on. I got to the point where I realized that I didn't want to be a scientist — I was far more interested in the commercialization and how you go from lab to product. That transition is very difficult. So, I stepped into the role of the entrepreneur. We had the patents and technology for my dad, I had an excellent mentor, and then our other co-founder was a technical founder.

IM: When and why did you start considering an HQ move? 

AR: We raised our first institutional venture funding in April 2017. Up until that point, it was primarily working with customers and grant funding. We worked with actually a group that has an office here called Energy Innovation Capital. They came in and invested in us and supported us, and George Coyle joined our board.

So, we had that tie to Houston, and I was in Houston a lot because there was a concentration of partners and customers — and not just like chemical plant customers, but also technology and R&D centers. As we started to scale, we brought on some other investors — Mitsubishi Chemical, JSR Corp., and most recently Yokogawa Electric Corp., which has its North American headquarters in Sugar Land.

We started to just build momentum towards it. I'd say we first had the conversations pre-COVID and then COVID hit, and we'd kind of just stopped everything for a while, just to make sure we knew where the business was heading. We've made it through COVID fine and did well on coming out of it. Then we felt it was the right time to pick that thread back up. We knew it made sense. The labor pool is amazing here, and there's just so many reasons why we were looking at it. So then we just pulled the trigger.

IM: How did you decide on the Houston area? What drew you to Stafford?

AR: Initially, we had a little landing pad in the East End Maker Hub, so we got in there and they were awesome. We actually had started hiring remote people here in 2019 because we knew the move was going to happen at some point. We had a place for them to go work out of EEMH while we searched for a permanent facility. We connected with the Greater Houston Partnership, and they plugged us in to Houston Exponential, and they have been very good at introducing us to the right people. We just don't know the lay of the land to be honest, so they've been a great resource. We were looking originally on the northside of Houston, and then we saw the Stafford area. There's a huge concentration of similar type companies — automation, some software, some hardware. There were some tax advantages. We settled in the Stafford area and are very happy with the choice we made to end up here.

IM: I know you recently raised a $7.5M venture funding round. What does that funding mean for growth?

AR: Like any capital, the objective is to use it to grow. For us, "grow" has several different areas. One is the product. There's a very long roadmap of both hardware and software improvements that we want to make. So basically we're accelerating a lot of the things on our roadmap to do things like closed-loop control based on our data — imagine running a whole plant autonomously based on measurements that we're making. We're moving more and more toward that autonomous operation world and improving a lot of the actual underlying hardware, making the measurements, building out sales and marketing as we start to serve more and more customers. Product sales and marketing and customer success are the areas that we're scaling.

IM: As you grow your local team, what are you looking for?

AR: Field applications, software, some automation technicians, and more. We do have some life science applications. So, in addition to our core area on the chemical side, we have a product we've sold into biopharma, and so we want to grow some of that. We're actually hiring for a product manager for the life science side of the business. So, that one's a pretty unique opportunity and role.

IM: Considering your life science application, it seems like Houston is a good fit for that vertical as well, right?

AR: We're working with the Houston of today, but also the Houston of tomorrow, which is this life science play. The next phase is kind of following that innovation value chain. So, figuring out what's the R&D and manufacturing of these pharmaceuticals, and how you can attract more of those technology centers and factories to make the stuff here. If you look at the talent pool here, those resources are somewhat fungible with the resources that serve petrochemical and oil and gas.

This cross pollination I think actually could be quite an interesting differentiator for Houston if the city can build that critical mass. So yes, I think there is an opportunity for us to leverage this vision that Houston has for life science. Now, we'll still have to go to the coast to go to our customers, but I think talent pool, and eventually you might even have customers here. It's certainly feasible.

------

This conversation has been edited for brevity and clarity.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas university to lead new FAA tech center focused on drones

taking flight

The Texas A&M University System will run the Federal Aviation Administration’s new Center for Advanced Aviation Technologies, which will focus on innovations like commercial drones.

“Texas is the perfect place for our new Center for Advanced Aviation Technologies,” U.S. Transportation Secretary Sean Duffy said in a release. “From drones delivering your packages to powered lift technologies like air taxis, we are at the cusp of an aviation revolution. The [center] will ensure we make that dream a reality and unleash American innovation safely.”

U.S. Sen. Ted Cruz, a Texas Republican, included creation of the center in the FAA Reauthorization Act of 2024. The center will consist of an airspace laboratory, flight demonstration zones, and testing corridors.

Texas A&M University-Corpus Christi will lead the initiative, testing unstaffed aircraft systems and other advanced technologies. The Corpus Christi campus houses the Autonomy Research Institute, an FAA-designated test site. The new center will be at Texas A&M University-Fort Worth.

The College Station-based Texas A&M system says the center will “bring together” its 19 institutions, along with partners such as the University of North Texas in Denton and Southern Methodist University in University Park.

According to a Department of Transportation news release, the center will play “a pivotal role” in ensuring the safe operation of advanced aviation technologies in public airspace.

The Department of Transportation says it chose the Texas A&M system to manage the new center because of its:

  • Proximity to major international airports and the FAA’s regional headquarters in Fort Worth
  • Existing infrastructure for testing of advanced aviation technologies
  • Strong academic programs and industry partnerships

“I’m confident this new research and testing center will help the private sector create thousands of high-paying jobs and grow the Texas economy through billions in new investments,” Cruz said.

“This is a significant win for Texas that will impact communities across our state,” the senator added, “and I will continue to pursue policies that create new jobs, and ensure the Lone Star State continues to lead the way in innovation and the manufacturing of emerging aviation technologies.”

Texas Republicans are pushing to move NASA headquarters to Houston

space city

Two federal lawmakers from Texas are spearheading a campaign to relocate NASA’s headquarters from Washington, D.C., to the Johnson Space Center in Houston’s Clear Lake area. Houston faces competition on this front, though, as lawmakers from two other states are also vying for this NASA prize.

With NASA’s headquarters lease in D.C. set to end in 2028, U.S. Sen. Ted Cruz, a Texas Republican, and U.S. Rep. Brian Babin, a Republican whose congressional district includes the Johnson Space Center, recently wrote a letter to President Trump touting the Houston area as a prime location for NASA’s headquarters.

“A central location among NASA’s centers and the geographical center of the United States, Houston offers the ideal location for NASA to return to its core mission of space exploration and to do so at a substantially lower operating cost than in Washington, D.C.,” the letter states.

Cruz is chairman of the Senate Committee on Commerce, Science, and Transportation; and Babin is chairman of the House Committee on Science, Space, and Technology. Both committees deal with NASA matters. Twenty-five other federal lawmakers from Texas, all Republicans, signed the letter.

In the letter, legislators maintain that shifting NASA’s headquarters to the Houston area makes sense because “a seismic disconnect between NASA’s headquarters and its missions has opened the door to bureaucratic micromanagement and an erosion of [NASA] centers’ interdependence.”

Founded in 1961, the $1.5 billion, 1,620-acre Johnson Space Center hosts NASA’s mission control and astronaut training operations. More than 12,000 employees work at the 100-building complex.

According to the state comptroller, the center generates an annual economic impact of $4.7 billion for Texas, and directly and indirectly supports more than 52,000 public and private jobs.

In pitching the Johnson Space Center for NASA’s HQ, the letter points out that Texas is home to more than 2,000 aerospace, aviation, and defense-related companies. Among them are Elon Musk’s SpaceX, based in the newly established South Texas town of Starbase; Axiom Space and Intuitive Machines, both based in Houston; and Firefly Aerospace, based in the Austin suburb of Cedar Park.

The letter also notes the recent creation of the Texas Space Commission, which promotes innovation in the space and commercial aerospace sectors.

Furthermore, the letter cites Houston-area assets for NASA such as:

  • A strong business environment.
  • A low level of state government regulation.
  • A cost of living that’s half of what it is in the D.C. area.

“Moving the NASA headquarters to Texas will create more jobs, save taxpayer dollars, and reinvigorate America’s space agency,” the letter says.

Last November, NASA said it was hunting for about 375,000 to 525,000 square feet of office space in the D.C. area to house the agency’s headquarters workforce. About 2,500 people work at the agency’s main offices. NASA’s announcement set off a scramble among three states to lure the agency’s headquarters.

Aside from officials in Texas, politicians in Florida and Ohio are pressing NASA to move its headquarters to their states. Florida and Ohio both host major NASA facilities.

NASA might take a different approach, however. “NASA is weighing closing its headquarters and scattering responsibilities among the states, a move that has the potential to dilute its coordination and influence in Washington,” Politico reported in March.

Meanwhile, Congressional Delegate Eleanor Holmes Norton, a Democrat who represents D.C., introduced legislation in March that would prohibit relocating a federal agency’s headquarters (including NASA’s) away from the D.C. area without permission from Congress.

“Moving federal agencies is not about saving taxpayer money and will degrade the vital services provided to all Americans across the country,” Norton said in a news release. “In the 1990s, the Bureau of Land Management moved its wildfire staff out West, only to move them back when Congress demanded briefings on new wildfires.”

Houston research breakthrough could pave way for next-gen superconductors

Quantum Breakthrough

A study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.