Jay Manouchehri (left) is now CEO of Fluence Analytics, and co-founder Alex Reed has transitioned to president and chief commercial officer. Photo courtesy of Fluence Analytics

Teamwork makes the dream work, and a Houston-based tech startup is one step closer to its dream team, according to the company's leadership.

Fluence Analytics, which moved its headquarters to the Houston area from New Orleans last year, has named Jay Manouchehri as the company's CEO. Manouchehri has worked in leadership roles within difital transformation at ABB and Honeywell all around the world, as well as in consulting and private equity.

"As you (can see) from Jay's background he is exactly the type of person we need to help take our company the next level," says co-founder Alex Reed. "I think he's gonna be critical as we did this Houston move and go to this next phase of growth and eventually drive to an exit."

Reed has transitioned from CEO to chief commercial officer, but Manouchehri tells InnovationMap the two really lead the company together and balance each other out. Reed says he's focused on commercial product strategy and Manouchehri is leading industrial growth.

“The next step for Fluence is really that we are industrializing our product and getting it into the industrial market," Manouchehri says. "That's exactly why we moved to Houston — it's where a lot of our clients are. We're building up and structure the company in such a manner that it could scale, get the right partnerships, and hire a team to take us to the next level and deliver the technology."

Fluence's technology is changing the game within the polymer space. The industrial and laboratory monitoring solutions — a combination of software and hardware — track and report key data in real time allowing industrial polymer producers to improve process control.

"When I saw what Alex is doing, it wasn't like it's a startup looking for a problem to solve. It's a startup trying to crack a nut that a lot of people in this industry have be in trying for 20 or 30 years and haven't been able to do so," Manouchehri says.

The move to Houston has allowed the company access to new and existing customers within the industry, but also potential acquirers and the company says an exit could be possible over the next few years. Additionally, Houston provides an opportunity to expand into the biomedical space. Recently, Fluence hired a Houston employee to build out this vertical.

"MRNAs and DNAs are all polymers. So, we use the same IP and same technology and do analysis, sensing, and data analytics for the biopharma industry," Manouchehri says. "We actually are pushing that quite strongly. Our client base is growing rapidly."

Another avenue Fluence is excited about is chemical recycling or polymerization recycling. Reed says they are closely watching the traction within the circular economy.

"Imagine taking plastic bottles and being able to recycle them back to the original molecule and then reprocess them into a bottle again," Reed says. "Mechanical recycling is more typical now and has a lot of disadvantages because of the additives and the properties that you get when you melt down all the different types of plastics. (Chemical recycling) would actually allow you to make new plastic from the old plastic, just by taking the original molecule out."

Fluence Analytics, which raised a $7.5 million round led by Energy Innovation Capital last summer, has its headquarters in Stafford, just southwest of Houston.

This week's roundup of Houston innovators includes Sarah Groen of Bell & Bly Travel, Alex Reed of Fluence Analytics, and Bettina Beech of UH. Courtesy photos

3 Houston innovators to know this week

who's who

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — from travel to analytics— recently making headlines in Houston innovation.

Sarah Groen, founder of Bell and Bly Travel

Sarah Groen, travel entrepreneur and longtime Houston tech ecosystem member, joins the Houston Innovators Podcast. Photo courtesy of Bell and Bly Travel

It's been a scary time for travel-related businesses, and Sarah Groen has had to get innovative to maintain her business as a travel adviser. Lucky for Groen, who has a long career in tech and innovation, she had all the right pivots, including offering digital travel packages, launching a new podcast, and more.

"During COVID, a lot of businesses either shutdown or took a pause, but we accelerated," Groen says.

Groen her career on the Houston Innovators Podcast. She also gives some strategic advice for founders — like trusting your gut and reading the signs when it comes to product-market fit — on the podcast. Click here to read more and stream the episode.

Alex Reed, co-founder and CEO of Fluence Analytics

Alex Reed joined InnovationMap for a Q&A on the company's move to Houston and its growth plans. Photo courtesy of Fluence Analytics

Alex Reed watched his father work in the labs on his research as he grew up, but he realized his future wasn't in the lab. Instead, he launched a career in taking that research and turning it into a company.

Founded in 2012 in New Orleans, Fluence Analytics has entered its next phase of growth by moving its headquarters to Houston following a $7.5 million venture capital raise.

We're working with the Houston of today, but also the Houston of tomorrow," Reed tells InnovationMap in a Q&A. Click here to read more.

Bettina Beech, chief population health officer at the University of Houston

Bettina Beech is a newly named AIM-AHEAD coordinating center team member. Photo via UH.edu

The University of Houston has joined in on a national initiative to increase the diversity of artificial intelligence researchers, according to a news release from the school. Unfortunately, AI — designed by humans — mimics human decision making through its choice of algorithms. This means that the same biases humans deal with have made it into the AI decision making too. These gaps can lead to continued disparities and inequities for underrepresented communities especially in regards to health care, job hiring, and more.

"Beyond health care, AI has been used in areas from facial recognition to self-driving cars and beyond, but there is an extreme lack of diversity among the developers of AI/ML tools. Many studies have shown that flawed AI systems and algorithms perpetuate gender and racial biases and have resulted in untoward outcomes," says Bettina Beech, chief population health officer at the University of Houston and newly named AIM-AHEAD coordinating center team member.

The initiative will bring together collaborators and experts across AI and machine learning, health equity research, data science training, data infrastructure and more. The other universities involved include: University of Colorado-Anschutz Medical Center in Aurora; University of California, Los Angeles; Meharry Medical College in Nashville; Morehouse School of Medicine in Atlanta; Johns Hopkins University, and Vanderbilt University Medical Center. Click here to read more.

Alex Reed, co-founder and CEO of Fluence Analytics, joined InnovationMap for a Q&A on the company's move to Houston and its growth plans. Photo courtesy of Fluence Analytics

Fresh off $7.5M funding, this new-to-Houston tech company plans to grow and expand in life science space

q&A

Founded in 2012 in New Orleans, a tech company that provides software and hardware solutions for the chemicals industry has entered its next phase of growth by moving its headquarters to Houston following a $7.5 million venture capital raise.

Fluence Analytics, which announced its recent raise led by Yokogawa Electric Corp. last month, has officially moved to the Houston area. The company's new HQ is in Stafford. Alex Reed, co-founder and CEO of the company, joined InnovationMap for a Q&A about what led up to the move and the future of the company, which includes expanding into the life science field.

InnovationMap: Tell me about Fluence Analytics — what does the technology do and why did you decide to start the company?

Alex Reed: We have developed a patented technology that can optimize chemical production. We basically are able to measure what's happening in real time in a process. Imagine if you're baking a cake, and you follow this recipe and sometimes you get the cake you want, sometimes it's too dry, and sometimes it's not cooked enough. And so the polymers industry, for simplistic terms, has that type of an issue. You don't really know exactly where you're at your equipment behaves differently. Basically, what we're able to do is give them real-time information on what's happening as they're baking the cake so that every time they can get a perfect cake.

We have a software and hardware solution that we install in these plants to get these measurements so that our customers can optimize production — and they want to do that to improve their yield, reduce waste, increase safety, and improve quality. There are a lot of different reasons that companies are interested in our technology and we have managed to grow globally. We have customers in Asia, Europe, and the U.S.

We spun out of Tulane University. It's an interesting story because my dad is the inventor of the technology — he's a physics professor at Tulane. I grew up working in the lab with him literally since the age of 12, and I was super interested in technology and science and saw that he was working with all these chemical companies. They were always very interested in what he was working on. I got to the point where I realized that I didn't want to be a scientist — I was far more interested in the commercialization and how you go from lab to product. That transition is very difficult. So, I stepped into the role of the entrepreneur. We had the patents and technology for my dad, I had an excellent mentor, and then our other co-founder was a technical founder.

IM: When and why did you start considering an HQ move? 

AR: We raised our first institutional venture funding in April 2017. Up until that point, it was primarily working with customers and grant funding. We worked with actually a group that has an office here called Energy Innovation Capital. They came in and invested in us and supported us, and George Coyle joined our board.

So, we had that tie to Houston, and I was in Houston a lot because there was a concentration of partners and customers — and not just like chemical plant customers, but also technology and R&D centers. As we started to scale, we brought on some other investors — Mitsubishi Chemical, JSR Corp., and most recently Yokogawa Electric Corp., which has its North American headquarters in Sugar Land.

We started to just build momentum towards it. I'd say we first had the conversations pre-COVID and then COVID hit, and we'd kind of just stopped everything for a while, just to make sure we knew where the business was heading. We've made it through COVID fine and did well on coming out of it. Then we felt it was the right time to pick that thread back up. We knew it made sense. The labor pool is amazing here, and there's just so many reasons why we were looking at it. So then we just pulled the trigger.

IM: How did you decide on the Houston area? What drew you to Stafford?

AR: Initially, we had a little landing pad in the East End Maker Hub, so we got in there and they were awesome. We actually had started hiring remote people here in 2019 because we knew the move was going to happen at some point. We had a place for them to go work out of EEMH while we searched for a permanent facility. We connected with the Greater Houston Partnership, and they plugged us in to Houston Exponential, and they have been very good at introducing us to the right people. We just don't know the lay of the land to be honest, so they've been a great resource. We were looking originally on the northside of Houston, and then we saw the Stafford area. There's a huge concentration of similar type companies — automation, some software, some hardware. There were some tax advantages. We settled in the Stafford area and are very happy with the choice we made to end up here.

IM: I know you recently raised a $7.5M venture funding round. What does that funding mean for growth?

AR: Like any capital, the objective is to use it to grow. For us, "grow" has several different areas. One is the product. There's a very long roadmap of both hardware and software improvements that we want to make. So basically we're accelerating a lot of the things on our roadmap to do things like closed-loop control based on our data — imagine running a whole plant autonomously based on measurements that we're making. We're moving more and more toward that autonomous operation world and improving a lot of the actual underlying hardware, making the measurements, building out sales and marketing as we start to serve more and more customers. Product sales and marketing and customer success are the areas that we're scaling.

IM: As you grow your local team, what are you looking for?

AR: Field applications, software, some automation technicians, and more. We do have some life science applications. So, in addition to our core area on the chemical side, we have a product we've sold into biopharma, and so we want to grow some of that. We're actually hiring for a product manager for the life science side of the business. So, that one's a pretty unique opportunity and role.

IM: Considering your life science application, it seems like Houston is a good fit for that vertical as well, right?

AR: We're working with the Houston of today, but also the Houston of tomorrow, which is this life science play. The next phase is kind of following that innovation value chain. So, figuring out what's the R&D and manufacturing of these pharmaceuticals, and how you can attract more of those technology centers and factories to make the stuff here. If you look at the talent pool here, those resources are somewhat fungible with the resources that serve petrochemical and oil and gas.

This cross pollination I think actually could be quite an interesting differentiator for Houston if the city can build that critical mass. So yes, I think there is an opportunity for us to leverage this vision that Houston has for life science. Now, we'll still have to go to the coast to go to our customers, but I think talent pool, and eventually you might even have customers here. It's certainly feasible.

------

This conversation has been edited for brevity and clarity.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New Rice Brain Institute partners with TMC to award inaugural grants

brain trust

The recently founded Rice Brain Institute has named the first four projects to receive research awards through the Rice and TMC Neuro Collaboration Seed Grant Program.

The new grant program brings together Rice faculty with clinicians and scientists at The University of Texas Medical Branch, Baylor College of Medicine, UTHealth Houston and The University of Texas MD Anderson Cancer Center. The program will support pilot projects that address neurological disease, mental health and brain injury.

The first round of awards was selected from a competitive pool of 40 proposals, and will support projects that reflect Rice Brain Institute’s research agenda.

“These awards are meant to help teams test bold ideas and build the collaborations needed to sustain long-term research programs in brain health,” Behnaam Aazhang, Rice Brain Institute director and co-director of the Rice Neuroengineering Initiative, said in a news release.

The seed funding has been awarded to the following principal investigators:

  • Kevin McHugh, associate professor of bioengineering and chemistry at Rice, and Peter Kan, professor and chair of neurosurgery at the UTMB. McHugh and Kan are developing an injectable material designed to seal off fragile, abnormal blood vessels that can cause life-threatening bleeding in the brain.
  • Jerzy Szablowski, assistant professor of bioengineering at Rice, and Jochen Meyer, assistant professor of neurology at Baylor. Szablowski and Meyer are leading a nonsurgical, ultrasound approach to deliver gene-based therapies to deep brain regions involved in seizures to control epilepsy without implanted electrodes or invasive procedures.
  • Juliane Sempionatto, assistant professor of electrical and computer engineering at Rice, and Aaron Gusdon, associate professor of neurosurgery at UTHealth Houston. Sempionatto and Gusdon are leading efforts to create a blood test that can identify patients at high risk for delayed brain injury following aneurysm-related hemorrhage, which could lead to earlier intervention and improved outcomes.
  • Christina Tringides, assistant professor of materials science and nanoengineering at Rice, and Sujit Prabhu, professor of neurosurgery at MD Anderson, who are working to reduce the risk of long-term speech and language impairment during brain tumor removal by combining advanced brain recordings, imaging and noninvasive stimulation.

The grants were facilitated by Rice’s Educational and Research Initiatives for Collaborative Health (ENRICH) Office. Rice says that the unique split-funding model of these grants could help structure future collaborations between the university and the TMC.

The Rice Brain Institute launched this fall and aims to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders. Last month, the university's Shepherd School of Music also launched the Music, Mind and Body Lab, an interdisciplinary hub that brings artists and scientists together to study the "intersection of the arts, neuroscience and the medical humanities." Read more here.

Your data center is either closer than you think or much farther away

houston voices

A new study shows why some facilities cluster in cities for speed and access, while others move to rural regions in search of scale and lower costs. Based on research by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard).

Key findings:

  • Third-party colocation centers are physical facilities in close proximity to firms that use them, while cloud providers operate large data centers from a distance and sell access to virtualized computing resources as on‑demand services over the internet.
  • Hospitals and financial firms often require urban third-party centers for low latency and regulatory compliance, while batch processing and many AI workloads can operate more efficiently from lower-cost cloud hubs.
  • For policymakers trying to attract data centers, access to reliable power, water and high-capacity internet matter more than tax incentives.

Recent outages and the surge in AI-driven computing have made data center siting decisions more consequential than ever, especially as energy and water constraints tighten. Communities invest public dollars on the promise of jobs and growth, while firms weigh long-term commitments to land, power and connectivity.

Against that backdrop, a critical question comes into focus: Where do data centers get built — and what actually drives those decisions?

A new study by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard Business School) provides the first large-scale statistical analysis of data center location strategies across the United States. It offers policymakers and firms a clearer starting point for understanding how different types of data centers respond to economic and strategic incentives.

Forthcoming in the journal Strategy Science, the study examines two major types of infrastructure: third-party colocation centers that lease server space to multiple firms, and hyperscale cloud centers owned by providers like Amazon, Google and Microsoft.

Two Models, Two Location Strategies

The study draws on pre-pandemic data from 2018 and 2019, a period of relative geographic stability in supply and demand. This window gives researchers a clean baseline before remote work, AI demand and new infrastructure pressures began reshaping internet traffic patterns.

The findings show that data centers follow a bifurcated geography. Third-party centers cluster in dense urban markets, where buyers prioritize proximity to customers despite higher land and operating costs. Cloud providers, by contrast, concentrate massive sites in a small number of lower-density regions, where electricity, land and construction are cheaper and economies of scale are easier to achieve.

Third-party data centers, in other words, follow demand. They locate in urban markets where firms in finance, healthcare and IT value low latency, secure storage, and compliance with regulatory standards.

Using county-level data, the researchers modeled how population density, industry mix and operating costs predict where new centers enter. Every U.S. metro with more than 700,000 residents had at least one third-party provider, while many mid-sized cities had none.

ImageThis pattern challenges common assumptions. Third-party facilities are more distributed across urban America than prevailing narratives suggest.

Customer proximity matters because some sectors cannot absorb delay. In critical operations, even slight pauses can have real consequences. For hospital systems, lag can affect performance and risk exposure. And in high-frequency trading, milliseconds can determine whether value is captured or lost in a transaction.

“For industries where speed is everything, being too far from the physical infrastructure can meaningfully affect performance and risk,” Pan Fang says. “Proximity isn’t optional for sectors that can’t absorb delay.”

The Economics of Distance

For cloud providers, the picture looks very different. Their decisions follow a logic shaped primarily by cost and scale. Because cloud services can be delivered from afar, firms tend to build enormous sites in low-density regions where power is cheap and land is abundant.

These facilities can draw hundreds of megawatts of electricity and operate with far fewer employees than urban centers. “The cloud can serve almost anywhere,” Pan Fang says, “so location is a question of cost before geography.”

The study finds that cloud infrastructure clusters around network backbones and energy economics, not talent pools. Well-known hubs like Ashburn, Virginia — often called “Data Center Alley” — reflect this logic, having benefited from early network infrastructure that made them natural convergence points for digital traffic.

Local governments often try to lure data centers with tax incentives, betting they will create high-tech jobs. But the study suggests other factors matter more to cloud providers, including construction costs, network connectivity and access to reliable, affordable electricity.

When cloud centers need a local presence, distance can sometimes become a constraint. Providers often address this by working alongside third-party operators. “Third-party centers can complement cloud firms when they need a foothold closer to customers,” Pan Fang says.

That hybrid pattern — massive regional hubs complementing strategic colocation — may define the next phase of data center growth.

Looking ahead, shifts in remote work, climate resilience, energy prices and AI-driven computing may reshape where new facilities go. Some workloads may move closer to users, while others may consolidate into large rural hubs. Emerging data-sovereignty rules could also redirect investment beyond the United States.

“The cloud feels weightless,” Pan Fang says, “but it rests on real choices about land, power and proximity.”

---

This article originally appeared on Rice Business Wisdom. Written by Scott Pett.

Pan Fang and Greenstein (2025). “Where the Cloud Rests: The Economic Geography of Data Centers,” forthcoming in Strategy Science.

Houston climbs to top 10 spot on North American tech hubs index

tech report

Houston already is the Energy Capital of the World, and now it’s gaining ground as a tech hub.

On Site Selection magazine’s 2026 North American Tech Hub Index, Houston jumped to No. 10 from No. 16 last year. The index relies on data from Site Selection as well as data from CBRE, CompTIA and TeleGeography to rank the continent’s tech hotspots. The index incorporates factors such as internet connectivity, tech talent and facility projects for tech companies.

In 2023, the Greater Houston Partnership noted the region had “begun to receive its due as a prominent emerging tech hub, joining the likes of San Francisco and Austin as a major player in the sector, and as a center of activity for the next generation of innovators and entrepreneurs.”

The Houston-area tech sector employs more than 230,000 people, according to the partnership, and generates an economic impact of $21.2 billion.

Elsewhere in Texas, two other metros fared well on the Site Selection index:

  • Dallas-Fort Worth nabbed the No. 1 spot, up from No. 2 last year.
  • Austin rose from No. 8 last year to No. 7 this year.

San Antonio slid from No. 18 in 2025 to No. 22 in 2026, however.

Two economic development officials in DFW chimed in about the region’s No. 1 ranking on the index:

  • “This ranking affirms what we’ve long seen on the ground — Dallas-Fort Worth is a top-tier technology and innovation center,” said Duane Dankesreiter, senior vice president of research and innovation at the Dallas Regional Chamber. “Our region’s scale, talent base, and diverse strengths … continue to set DFW apart as a national leader.”
  • “Being recognized as the top North American tech hub underscores the strength of the entire Dallas-Fort Worth region as a center of innovation and next-generation technology,” said Robert Allen, president and CEO of the Fort Worth Economic Development Partnership.

While not directly addressing Austin’s Site Selection ranking, Thom Singer, CEO of the Austin Technology Council, recently pondered whether Silicon Hills will grow “into the kind of community that other cities study for the right reasons.”

“Austin tech is not a club. It is not a scene. It is not a hashtag, a happy hour, or any one place or person,” Singer wrote on the council’s blog. “Austin tech is an economic engine and a global brand, built by thousands of people who decided to take a risk, build something, hire others, and be part of a community that is still young enough to reinvent itself.”

South of Austin, Port San Antonio is driving much of that region’s tech activity. Occupied by more than 80 employers, the 1,900-acre tech and innovation campus was home to 18,400 workers in 2024 and created a local economic impact of $7.9 billion, according to a study by Zenith Economics.

“Port San Antonio is a prime example of how innovation and infrastructure come together to strengthen [Texas’] economy, support thousands of good jobs, and keep Texas competitive on the global stage,” said Kelly Hancock, the acting state comptroller.