This week's roundup of Houston innovators includes Ken Nguyen of bp, Paul Frison, and Alamgir Karim of University of Houston. Photos courtesy

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an academic researcher, an energy tech leader, and a recently passed Houston innovation champion.

Ken Nguyen, principal technical program manager at bp

Ken Nguyen, principal technical program manager at bp, joins the Houston Innovators Podcast to discuss the company's new partnership with NASA. Photo courtesy of bp

The recently announced partnership between bp and NASA is a match made in Houston. The energy giant, which as its United States headquarters in Houston, entered into a Space Act Agreement with NASA to combine resources and efforts with innovation in mind.

"Houston has always been known as the Space City, and we're also known as the Energy Capital of the World, but there hasn't always been collaboration," Ken Nguyen, principal technical program manager at bp, says on the Houston Innovators Podcast. "The challenges that NASA is facing is very similar to the challenges that the oil industry faces — we operate in very harsh environments, safety is the most critical aspect of our operation, and now the economic business model for NASA has changed."

Nguyen explains that while both bp and NASA are navigating similar challenges and changes within their industry, they are going about it in different ways. That's where the opportunity to collaborate comes in. Read more.

Paul Frison, founder of the Houston Technology Center

Paul Frison, the founder of the Houston Technology Center, has died. Photo via dignitymemorial.com

The Houston innovation ecosystem is mourning the loss of one of its early leaders, Paul Frison, who died on September 5. He was 87.

A long-time Houston businessman, Frison founded the Houston Technology Center in 1999 and served as its CEO and president. The organization evolved into Houston Exponential several years ago. Frison remained active within Houston innovation until 2020.

“Paul Frison was a visionary and energetic leader who always presented a positive outlook on what the Houston technology entrepreneurship community could become," Brad Burke, associate vice president for industry and new ventures at Rice University's Office of Innovation, remembers. "He was one of the pioneers in the community who established the Houston Technology Center as one of the early leaders of the Houston ecosystem. I admired how he helped launch the ecosystem and created the platform for many others to build upon.” Read more.

Alamgir Karim, professor at the University of Houston

Alamgir Karim was instrumental in the new discovery. Photo Courtesy of University of Houston Office of Media Relations

A flask of Houston’s rain helped answer a long-running question about the origin of cellular life.

The solution is proposed by two University of Houston scientists, William A. Brookshire Department of Chemical Engineering (UH ChBE) former grad student Aman Agrawal (now a postdoctoral researcher at University of Chicago’s Pritzker School of Molecular Engineering) and Alamgir Karim, UH Dow Chair and Welch Foundation Professor of chemical and biomolecular engineering, and director of both the International Polymer & Soft Matter Center and the Materials Engineering Program at UH. They were joined by UChicago PME Dean Emeritus Matthew Tirrell and Nobel Prize-winning biologist Jack Szostak in an article published last week in Scientific Advances. Read more.

Alamgir Karim was instrumental in the new discovery. Photo Courtesy of University of Houston Office of Media Relations

Scientists use Houston rainwater to explore origins of life on Earth

let it rain

A flask of Houston’s rain helped answer a long-running question about the origin of cellular life.

The solution is proposed by two University of Houston scientists, William A. Brookshire Department of Chemical Engineering (UH ChBE) former grad student Aman Agrawal (now a postdoctoral researcher at University of Chicago’s Pritzker School of Molecular Engineering) and Alamgir Karim, UH Dow Chair and Welch Foundation Professor of chemical and biomolecular engineering, and director of both the International Polymer & Soft Matter Center and the Materials Engineering Program at UH. They were joined by UChicago PME Dean Emeritus Matthew Tirrell and Nobel Prize-winning biologist Jack Szostak in an article published last week in Scientific Advances.

For two decades, scientists like Szostak have hypothesized that RNA fragments were the first components of life to form in the Earth’s primordial seas 3.8 million years ago. Although DNA is an essential component of cellular life, it can’t fold proteins, making it unlikely to be the initial starting point. Since RNA can fold proteins, it could have been the catalyst for cellular growth and evolution.

The problem is that seawater molecules allow RNA to bond and change too quickly, often within minutes. Rapid dissipation means no segregation of material, and thus no evolution. Szostak himself proved in 2014 that regular seawater doesn’t allow RNA fragments to form the membranes necessary for cellular life.

Then along comes Agrawal. He wasn’t looking into the origin of life. He was an engineer studying the properties of complex liquids for his doctorate. Karim was his thesis adviser and introduced Agrawal to Tirrell, who brought up the RNA problem over a lunch and some theories about how if the water was distilled it may have solved it. Where would you get distilled water 3.8 billion years ago?

“I spontaneously said ‘rainwater,’” says Karim. “His eyes lit up and he was very excited at the suggestion. So, you can say it was a spontaneous combustion of ideas or ideation.”

Using RNA samples from Szostak, they saw that distilled water increased the differences in exchange rate between samples from minutes to days, long enough for the RNA to begin mutation.

Distilled lab water is nothing like prehistoric rain, though. Luckily, a typical Houston downpour occurred during the research. Agrawal and fellow UH graduate student, Anusha Vonteddu ran outside with beakers to collect some. The samples again formed meshy walls, separating the RNA and possibly showing how life began from these fragments billions of years ago.

“The molecules we used to build these protocells are just models until more suitable molecules can be found as substitutes,” Agrawal said. “While the chemistry would be a little bit different, the physics will remain the same.”

------

This article originally ran on CultureMap.

With this new grant, UH has a new center for researching bioactive materials crystallization. Photo via UH.edu

Houston innovator receives $5M to establish new center that explores crystallization process

crystal clear initiative

A new hub at the University of Houston is being established with a crystal-clear mission — and fresh funding.

Thanks to funding from Houston-based organization The Welch Foundation, the University of Houston will be home to the Welch Center for Advanced Bioactive Materials Crystallization. The nonprofit doled out its inaugural $5 million Catalyst for Discovery Program Grant to the new initiative led by Jeffrey Rimer, Abraham E. Dukler Professor of Chemical Engineering, who is known internationally for his work with crystals that help treat malaria and kidney stones.

“Knowledge gaps in the nascent and rapidly developing field of nonclassical crystallization present a wide range of obstacles to design crystalline materials for applications that benefit humankind, spanning from medicine to energy and the environment,” says Rimer in a news release. “Success calls for a paradigm shift in the understanding of crystal nucleation mechanisms and structure selection that will be addressed in this center.”

The Welch Foundation, which was founded in 1954, has granted over $1.1 billion to scientists in Texas. This new grant program targets researchers focused on fundamental chemical solutions. Earlier this year, the organization announced nearly $28 million in grants to Texas institutions.

"Support from the Welch Foundation has led to important advances in the field of chemistry, not only within Texas, but also throughout the United States and the world as a whole,” says Randall Lee, Cullen Distinguished University Chair and professor of chemistry, in the release. “These advances extend beyond scientific discoveries and into the realm of education, where support from the Welch Foundation has played a significant role in building the technological workforce needed to solve ongoing and emerging problems in energy and health care.”

Rimer and Lee are joined by the following researchers on the newly announced center's team:

  • Peter Vekilov, Moores Professor, chemical and biomolecular engineering
  • Alamgir Karim, Dow Chair and Welch Foundation Professor, chemical and biomolecular engineering;
  • Jeremy Palmer, Ernest J. and Barbara M. Henley Associate Professor, chemical and biomolecular engineering
  • Gül Zerze, chemical and biomolecular engineering
  • Francisco Robles Hernandez, professor of engineering technology.

The University of Houston also received another grant from the Welch Foundation. Megan Robertson, UH professor of chemical engineering, received $4 million for her work with developing chemical processes to transform plastic waste into useful materials.

“For the University of Houston to be recognized with two highly-competitive Welch Foundation Catalyst Grants underscores the exceptional talent and dedication of our researchers and their commitment to making meaningful contributions to society through discovery,” Diane Chase, UH senior vice president for academic affairs and provost, says in the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston university students earn top honors at global energy-poverty competition

Winner, winner

A student-led team from the University of Houston and Texas A&M University took home top prizes at last month's Switch Energy Alliance Case Competition.

Competing virtually against 145 teams from 34 countries, the students, known as The Dream Team, won third place for their plan to address energy poverty in Egypt and Turkey. They were awarded $5,000 in prize money.

The competition challenges student teams to solve real-world energy problems to "drive progress towards a sustainable and equitable energy future," according to the Switch competition's website.

“The Switch competition tackles major issues that we often don’t think about on a daily basis in the United States, so it is a really interesting and tough challenge to solve,” Sarah Grace Kimberly, a senior finance major at UH and member of the team, said in a statement from the university

Kimberly was joined by Pranjal Sheth, a fellow senior finance major at UH, and Nathan Hazlett, a finance graduate student at TAMU with a bachelor’s degree in petroleum engineering.

The Dream Team developed a 10-year plan to address Egypt and Turkey's energy poverty that would create 200,000 jobs, reduce energy costs and improve energy access in rural areas. Its major components included:

  • Developing rooftop and utility-scale solar farms and solar canopies over irrigation canals
  • Expanding wind power capacity by taking advantage of high wind speeds in the Gulf of Suez and Western Desert
  • Deploying cost-efficient technologies along the Nile for rural electrification

“People in the United States should be extremely thankful for the infrastructure and systems that allow us to thrive with power, food and water,” Sheth said in the statement. “Texas went through Winter Storm Uri in 2021—people were without electricity for weeks, and lives were lost. It still comes up in conversations, but certain regions of the world, developing nations, live that experience almost every day. We need to make that a larger part of the conversation and work to help them.”

Team Quwa, a team of four students from the University of Texas at Austin, took home second place and $7,000 in prize money.

“This journey was both intellectually enriching and personally fulfilling,” Mohamed Awad, a PhD candidate at the Hildebrand Department of Petroleum and Geosystems Engineering, said in a statement from UT. “Through the case competition, we had an opportunity to contribute meaningful ideas to address a critical global issue.”

Team Energy Nexus from India earned the top prize and took home $10,000, according to a release from Switch.

Switch Energy Alliance is an Austin-based non-profit that's focused on energy education. The Switch competition began in 2020. Teams of three to four students create a presentation and 15-minute video. The top five teams present their case studies live and answer questions before a panel of judges.

More than 3,200 students from 55 countries have competed over the years. Click here to watch the 2024 final round.

------

This article originally ran on EnergyCapital.

Houston ranked among top 10 destinations for movers in 2024, report says

On the Move

Houston remains popular as one of the top 10 metropolitan areas for people on the move in 2024, according to U-Haul's Top U.S. Growth Metros and Cities report.

Houston ranked No. 9 in 2024, which is a big jump for the metro after the suburb of Conroe ranked No. 16 in 2023.

The two Texas metros that outranked Houston were Austin (No. 5) and Dallas-Fort Worth, which climbed through the ranks to take the No. 1 spot this year after previously ranking No. 9 in 2023.

College Station, the popular college town, is another Texas perennial: It's No. 6 for the second consecutive year on an accompanying U-Haul list of top growth cities (distinguished as being located outside the top metros).

Alas, Texas was unseated as the top state for movers, according to U-Haul's Top Growth States Report. The Lone Star State landed in the No. 2 spot, pushed aside by South Carolina, which topped the list for the first time.

"Migration to the Southeast and Southwest continues as families gauge their cost of living, job opportunities, quality of life and other factors that go into relocating to a new state," said John "J.T." Taylor, U-Haul International president. "Out-migration remains prevalent for a number of markets across the Northeast, Midwest and West Coast — and particularly California."

The annual migration report is based on how many one-way transactions were made by DIY movers using a U-Haul truck, trailer, or U-Box moving container across the U.S. and Canada.

While U-Haul's numbers don't directly correlate to population or economic growth, it is an interesting look at the performance of the top American cities and states that are attracting newcomers.

The full list of top 10 growth metros for 2024 are:

  • No. 1 – Dallas-Fort Worth, Texas
  • No. 2 – Charlotte, North Carolina
  • No. 3 – Phoenix, Arizona
  • No. 4 – Lakeland, Florida
  • No. 5 – Austin, Texas
  • No. 6 – Nashville, Tennessee
  • No. 7 – Raleigh, North Carolina
  • No. 8 – Palm Bay, Florida
  • No. 9 – Houston, Texas
  • No. 10 – Greenville, South Carolina
---

This story originally appeared on our sister site, CultureMap.com.

Being prepared: Has the Texas grid been adequately winterized?

Being Prepared

Houstonians may feel anxious as the city and state experience freezing temperatures this winter. Every year since 2021’s Winter Storm Uri, Texans wonder whether the grid will keep them safe in the face of another. The record-breaking cold temperatures of Uri exposed a crucial vulnerability in the state’s power and water infrastructure.

According to ERCOT’s 6-day supply and demand forecast from January 3, 2025, it expected plenty of generation capacity to meet the needs of Texans during the most recent period of colder weather. So why did the grid fail so spectacularly in 2021?

  1. Demand for electricity surged as millions of people tried to heat their homes.
  2. ERCOT was simply not prepared despite previous winter storms of similar intensity to offer lessons in similarities.
  3. The state was highly dependent on un-winterized natural gas power plants for electricity.
  4. The Texas grid is isolated from other states.
  5. Failures of communication and coordination between ERCOT, state officials, utility companies, gas suppliers, electricity providers, and power plants contributed to the devastating outages.

The domino effect resulted in power outages for millions of Texans, the deaths of hundreds of Texans, billions of dollars in damages, with some households going nearly a week without heat, power, and water. This catastrophe highlighted the need for swift and sweeping upgrades and protections against future extreme weather events.

Texas State Legislature Responds

Texas lawmakers proactively introduced and passed legislation aimed at upgrading the state’s power infrastructure and preventing repeated failures within weeks of the storm. Senate Bill 3 (SB3) measures included:

  • Requirements to weatherize gas supply chain and pipeline facilities that sell electric energy within ERCOT.
  • The ability to impose penalties of up to $1 million for violation of these requirements.
  • Requirement for ERCOT to procure new power sources to ensure grid reliability during extreme heat and extreme cold.
  • Designation of specific natural gas facilities that are critical for power delivery during energy emergencies.
  • Development of an alert system that is to be activated when supply may not be able to meet demand.
  • Requirement for the Public Utility Commission of Texas, or PUCT, to establish an emergency wholesale electricity pricing program.

Texas Weatherization by Natural Gas Plants

In a Railroad Commission of Texas document published May 2024 and geared to gas supply chain and pipeline facilities, dozens of solutions were outlined with weatherization best practices and approaches in an effort to prevent another climate-affected crisis from severe winter weather.

Some solutions included:

  • Installation of insulation on critical components of a facility.
  • Construction of permanent or temporary windbreaks, housing, or barriers around critical equipment to reduce the impact of windchill.
  • Guidelines for the removal of ice and snow from critical equipment.
  • Instructions for the use of temporary heat systems on localized freezing problems like heating blankets, catalytic heaters, or fuel line heaters.

According to Daniel Cohan, professor of environmental engineering at Rice University, power plants across Texas have installed hundreds of millions of dollars worth of weatherization upgrades to their facilities. In ERCOT’s January 2022 winterization report, it stated that 321 out of 324 electricity generation units and transmission facilities fully passed the new regulations.

Is the Texas Grid Adequately Winterized?

Utilities, power generators, ERCOT, and the PUCT have all made changes to their operations and facilities since 2021 to be better prepared for extreme winter weather. Are these changes enough? Has the Texas grid officially been winterized?

This season, as winter weather tests Texans, residents may potentially experience localized outages. When tree branches cannot support the weight of the ice, they can snap and knock out power lines to neighborhoods across the state. In the instance of a downed power line, we must rely on regional utilities to act quickly to restore power.

The specific legislation enacted by the Texas state government in response to the 2021 disaster addressed to the relevant parties ensures that they have done their part to winterize the Texas grid.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.