This week's roundup of Houston innovators includes Ken Nguyen of bp, Paul Frison, and Alamgir Karim of University of Houston. Photos courtesy

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an academic researcher, an energy tech leader, and a recently passed Houston innovation champion.

Ken Nguyen, principal technical program manager at bp

Ken Nguyen, principal technical program manager at bp, joins the Houston Innovators Podcast to discuss the company's new partnership with NASA. Photo courtesy of bp

The recently announced partnership between bp and NASA is a match made in Houston. The energy giant, which as its United States headquarters in Houston, entered into a Space Act Agreement with NASA to combine resources and efforts with innovation in mind.

"Houston has always been known as the Space City, and we're also known as the Energy Capital of the World, but there hasn't always been collaboration," Ken Nguyen, principal technical program manager at bp, says on the Houston Innovators Podcast. "The challenges that NASA is facing is very similar to the challenges that the oil industry faces — we operate in very harsh environments, safety is the most critical aspect of our operation, and now the economic business model for NASA has changed."

Nguyen explains that while both bp and NASA are navigating similar challenges and changes within their industry, they are going about it in different ways. That's where the opportunity to collaborate comes in. Read more.

Paul Frison, founder of the Houston Technology Center

Paul Frison, the founder of the Houston Technology Center, has died. Photo via dignitymemorial.com

The Houston innovation ecosystem is mourning the loss of one of its early leaders, Paul Frison, who died on September 5. He was 87.

A long-time Houston businessman, Frison founded the Houston Technology Center in 1999 and served as its CEO and president. The organization evolved into Houston Exponential several years ago. Frison remained active within Houston innovation until 2020.

“Paul Frison was a visionary and energetic leader who always presented a positive outlook on what the Houston technology entrepreneurship community could become," Brad Burke, associate vice president for industry and new ventures at Rice University's Office of Innovation, remembers. "He was one of the pioneers in the community who established the Houston Technology Center as one of the early leaders of the Houston ecosystem. I admired how he helped launch the ecosystem and created the platform for many others to build upon.” Read more.

Alamgir Karim, professor at the University of Houston

Alamgir Karim was instrumental in the new discovery. Photo Courtesy of University of Houston Office of Media Relations

A flask of Houston’s rain helped answer a long-running question about the origin of cellular life.

The solution is proposed by two University of Houston scientists, William A. Brookshire Department of Chemical Engineering (UH ChBE) former grad student Aman Agrawal (now a postdoctoral researcher at University of Chicago’s Pritzker School of Molecular Engineering) and Alamgir Karim, UH Dow Chair and Welch Foundation Professor of chemical and biomolecular engineering, and director of both the International Polymer & Soft Matter Center and the Materials Engineering Program at UH. They were joined by UChicago PME Dean Emeritus Matthew Tirrell and Nobel Prize-winning biologist Jack Szostak in an article published last week in Scientific Advances. Read more.

Alamgir Karim was instrumental in the new discovery. Photo Courtesy of University of Houston Office of Media Relations

Scientists use Houston rainwater to explore origins of life on Earth

let it rain

A flask of Houston’s rain helped answer a long-running question about the origin of cellular life.

The solution is proposed by two University of Houston scientists, William A. Brookshire Department of Chemical Engineering (UH ChBE) former grad student Aman Agrawal (now a postdoctoral researcher at University of Chicago’s Pritzker School of Molecular Engineering) and Alamgir Karim, UH Dow Chair and Welch Foundation Professor of chemical and biomolecular engineering, and director of both the International Polymer & Soft Matter Center and the Materials Engineering Program at UH. They were joined by UChicago PME Dean Emeritus Matthew Tirrell and Nobel Prize-winning biologist Jack Szostak in an article published last week in Scientific Advances.

For two decades, scientists like Szostak have hypothesized that RNA fragments were the first components of life to form in the Earth’s primordial seas 3.8 million years ago. Although DNA is an essential component of cellular life, it can’t fold proteins, making it unlikely to be the initial starting point. Since RNA can fold proteins, it could have been the catalyst for cellular growth and evolution.

The problem is that seawater molecules allow RNA to bond and change too quickly, often within minutes. Rapid dissipation means no segregation of material, and thus no evolution. Szostak himself proved in 2014 that regular seawater doesn’t allow RNA fragments to form the membranes necessary for cellular life.

Then along comes Agrawal. He wasn’t looking into the origin of life. He was an engineer studying the properties of complex liquids for his doctorate. Karim was his thesis adviser and introduced Agrawal to Tirrell, who brought up the RNA problem over a lunch and some theories about how if the water was distilled it may have solved it. Where would you get distilled water 3.8 billion years ago?

“I spontaneously said ‘rainwater,’” says Karim. “His eyes lit up and he was very excited at the suggestion. So, you can say it was a spontaneous combustion of ideas or ideation.”

Using RNA samples from Szostak, they saw that distilled water increased the differences in exchange rate between samples from minutes to days, long enough for the RNA to begin mutation.

Distilled lab water is nothing like prehistoric rain, though. Luckily, a typical Houston downpour occurred during the research. Agrawal and fellow UH graduate student, Anusha Vonteddu ran outside with beakers to collect some. The samples again formed meshy walls, separating the RNA and possibly showing how life began from these fragments billions of years ago.

“The molecules we used to build these protocells are just models until more suitable molecules can be found as substitutes,” Agrawal said. “While the chemistry would be a little bit different, the physics will remain the same.”

------

This article originally ran on CultureMap.

With this new grant, UH has a new center for researching bioactive materials crystallization. Photo via UH.edu

Houston innovator receives $5M to establish new center that explores crystallization process

crystal clear initiative

A new hub at the University of Houston is being established with a crystal-clear mission — and fresh funding.

Thanks to funding from Houston-based organization The Welch Foundation, the University of Houston will be home to the Welch Center for Advanced Bioactive Materials Crystallization. The nonprofit doled out its inaugural $5 million Catalyst for Discovery Program Grant to the new initiative led by Jeffrey Rimer, Abraham E. Dukler Professor of Chemical Engineering, who is known internationally for his work with crystals that help treat malaria and kidney stones.

“Knowledge gaps in the nascent and rapidly developing field of nonclassical crystallization present a wide range of obstacles to design crystalline materials for applications that benefit humankind, spanning from medicine to energy and the environment,” says Rimer in a news release. “Success calls for a paradigm shift in the understanding of crystal nucleation mechanisms and structure selection that will be addressed in this center.”

The Welch Foundation, which was founded in 1954, has granted over $1.1 billion to scientists in Texas. This new grant program targets researchers focused on fundamental chemical solutions. Earlier this year, the organization announced nearly $28 million in grants to Texas institutions.

"Support from the Welch Foundation has led to important advances in the field of chemistry, not only within Texas, but also throughout the United States and the world as a whole,” says Randall Lee, Cullen Distinguished University Chair and professor of chemistry, in the release. “These advances extend beyond scientific discoveries and into the realm of education, where support from the Welch Foundation has played a significant role in building the technological workforce needed to solve ongoing and emerging problems in energy and health care.”

Rimer and Lee are joined by the following researchers on the newly announced center's team:

  • Peter Vekilov, Moores Professor, chemical and biomolecular engineering
  • Alamgir Karim, Dow Chair and Welch Foundation Professor, chemical and biomolecular engineering;
  • Jeremy Palmer, Ernest J. and Barbara M. Henley Associate Professor, chemical and biomolecular engineering
  • Gül Zerze, chemical and biomolecular engineering
  • Francisco Robles Hernandez, professor of engineering technology.

The University of Houston also received another grant from the Welch Foundation. Megan Robertson, UH professor of chemical engineering, received $4 million for her work with developing chemical processes to transform plastic waste into useful materials.

“For the University of Houston to be recognized with two highly-competitive Welch Foundation Catalyst Grants underscores the exceptional talent and dedication of our researchers and their commitment to making meaningful contributions to society through discovery,” Diane Chase, UH senior vice president for academic affairs and provost, says in the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston university to launch artificial intelligence major, one of first in nation

BS in AI

Rice University announced this month that it plans to introduce a Bachelor of Science in AI in the fall 2025 semester.

The new degree program will be part of the university's department of computer science in the George R. Brown School of Engineering and Computing and is one of only a few like it in the country. It aims to focus on "responsible and interdisciplinary approaches to AI," according to a news release from the university.

“We are in a moment of rapid transformation driven by AI, and Rice is committed to preparing students not just to participate in that future but to shape it responsibly,” Amy Dittmar, the Howard R. Hughes Provost and executive vice president for academic affairs, said in the release. “This new major builds on our strengths in computing and education and is a vital part of our broader vision to lead in ethical AI and deliver real-world solutions across health, sustainability and resilient communities.”

John Greiner, an assistant teaching professor of computer science in Rice's online Master of Computer Science program, will serve as the new program's director. Vicente Ordóñez-Román, an associate professor of computer science, was also instrumental in developing and approving the new major.

Until now, Rice students could study AI through elective courses and an advanced degree. The new bachelor's degree program opens up deeper learning opportunities to undergrads by blending traditional engineering and math requirements with other courses on ethics and philosophy as they relate to AI.

“With the major, we’re really setting out a curriculum that makes sense as a whole,” Greiner said in the release. “We are not simply taking a collection of courses that have been created already and putting a new wrapper around them. We’re actually creating a brand new curriculum. Most of the required courses are brand new courses designed for this major.”

Students in the program will also benefit from resources through Rice’s growing AI ecosystem, like the Ken Kennedy Institute, which focuses on AI solutions and ethical AI. The university also opened its new AI-focused "innovation factory," Rice Nexus, earlier this year.

“We have been building expertise in artificial intelligence,” Ordóñez-Román added in the release. “There are people working here on natural language processing, information retrieval systems for machine learning, more theoretical machine learning, quantum machine learning. We have a lot of expertise in these areas, and I think we’re trying to leverage that strength we’re building.”

Houston biomanufacturing accelerator adds pilot plant to support scale-ups

new digs

Houston accelerator BioWell announced this month that it has taken over operations of Texas BioTechnology’s pilot plant in Richmond, Texas.

The 33,000-square-foot facility is one of the largest of its kind in the U.S. and features molecular biology labs, advanced automation, fermentation equipment and 16 dedicated benches for early-stage industrial biomanufacturing companies, according to a release from the company. It will allow BioWell to offer on-site education, workforce development, and lab training for students and workers.

BioWell and its founding company, First Bight Ventures, report that the facility should help address the industry's "scale-up bottleneck due to limited pilot- and demonstration-scale infrastructure" in the U.S.

"As a Houston-based accelerator dedicated exclusively to early-stage biomanufacturing startups, partnering with this facility was a natural and highly strategic decision for us. The site is fully operational and offers a strong platform to support biomanufacturing companies, industry leaders, and research institutions, providing critical expertise and infrastructure across a broad range of biotechnology production processes,” Veronica Breckenridge, founder of First Bight Ventures and BioWell, said in a news release.

First Bight Ventures shares that the partnership with the facility will also allow it to better support its portfolio companies and make them more attractive to future investors.

BioWell will host an open house and tours of the fermentation and lab spaces and an overview of current bioindustrial projects Wednesday, May 28, at 10:30 a.m. and 2 p.m. RSVPs are required.

BioWell was originally funded by a $700,000 U.S. Economic Development Administration’s Build to Scale grant and launched as a virtual accelerator for bioindustrial startups. Listen to an interview with Carlos Estrada, head of venture acceleration at BioWell, here.

Ultra-fast EV charging bays coming to Waffle House locations in Texas and beyond

power breakfast

Scattered, smothered and ... charged?

Starting next year, EV drivers can connect to ultra-fast charging stations at select Waffle House locations throughout Texas, courtesy of bp pulse.

The EV arm of British energy giant bp announced a strategic partnership with the all-day breakfast chain this week. The company aims to deploy a network of 400kW DC fast chargers and a mix of CCS and NACS connectors at Waffle House locations in Texas, Georgia, Florida, and other restaurants in the South.

Each Waffle House site will feature six ultra-fast EV charging bays, allowing drivers to "(enjoy) Waffle House’s 24/7 amenities," the announcement reads.

“Adding an iconic landmark like Waffle House to our growing portfolio of EV charging sites is such an exciting opportunity. As an integrated energy company, bp is committed to providing efficient solutions like ultra-fast charging to support our customers’ mobility needs," Sujay Sharma, CEO of bp pulse U.S., said in a news release. "We’re building a robust network of ultra-fast chargers across the country, and this is another example of third-party collaborations enabling access to charging co-located with convenient amenities for EV drivers.”

The news comes as bp pulse continues to grow its charging network in Texas.

The company debuted its new high-speed electric vehicle charging site, known as the Gigahub, at the bp America headquarters in Houston last year. In partnership with Hertz Electrifies Houston, it also previously announced plans to install a new EV fast-charging hub at Hobby Airport. In a recent partnership with Simon Malls, bp also shared plans to install EV charging Gigahubs at The Galleria and Katy Mills Mall.

bp has previously reported that it plans to invest $1 billion in EV charging infrastructure by 2030, with $500 million invested by the end of 2025.

---

A version of this article originally appeared on EnergyCapitalHTX.com.