Houston-based Solugen will build a 500,000-square-foot biomanufacturing facility in the Midwest thanks to a new strategic partnership. Photo courtesy of ADM

Solugen has scored a partnership with a global company to build a biomanufacturing facility adjacent to an existing corn complex in Marshall, Minnesota.

Solugen, a Houston company that's designed a process that converts plant-derived substances into essential materials, has announced its newest strategic partnership with sustainable solutions company ADM (NYSE:ADM). The partnership includes plans for Solugen to build a 500,000-square-foot biomanufacturing facility next to an existing ADM facility in the Midwest. The two companies will collaborate on producing biomaterials to replace fossil fuel-based products.

“The strategic partnership with ADM will allow Solugen to bring our chemienzymatic process to a commercial scale and meet existing customer demand for our high-performance, cost-competitive, sustainable products,” Gaurab Chakrabarti, co-founder and CEO of Solugen, says in a news release. “As one of the few scaled-up and de-risked biomanufacturing assets in the country, Solugen’s Bioforge platform is helping bolster domestic capabilities and supply chains that are critical in ensuring the U.S. reaches its ambitious climate targets.”

The company plans to begin on-site construction early next year, with plans to startup in the first half of 2025. The project should create at least 40 permanent jobs and 100 temporary construction positions.

“Sustainability is one of the enduring global trends powering ADM’s growth and underpinning the strategic evolution of our Carbohydrate Solutions business,” Chris Cuddy, president of ADM’s Carbohydrate Solutions business, says in the release. “ADM is one of the largest dextrose producers in the world, and this strategic partnership will allow us to further diversify our product stream as we continue to support plant-based solutions spanning sustainable packaging, pharma, plant health, construction, fermentation, and home and personal care.”

Founded in 2016 by Chakrabarti and Sean Hunt, Solugen's carbon-negative molecule factory, named the Bioforge, uses its chemienzymatic process in converting plant-sourced substances into essential materials that can be used instead of fossil fuels. The manufacturing process is carbon neutral, and Solugen has raised over $600 million from investors that believe in the technology's potential.

“The initial phase of the project will significantly increase Solugen’s manufacturing capacity, which is critical for commercializing our existing line of molecules and kicks off plans for a multi-phase large-scale U.S. Bioforge buildout,” Hunt, CTO of Solugen, says in the release. “The increase in capacity will also free up our Houston operation for research and development efforts into additional molecules and market applications.”

The project should create at least 40 permanent jobs and 100 temporary construction positions.

"As a community with a strong foundation of agriculture and innovation, we look forward to welcoming Solugen to Marshall. This industry-leading facility will serve as a powerful economic driver for the city, creating new jobs and diversifying our industry,” City of Marshall Mayor Bob Byrnes says in the statement. "We are thankful for ADM’s longstanding commitment and impact to Marshall, which has paved the way for this remarkable partnership and continues to further economic growth to our region."

It's the second major company partnership announcement Solugen has made this month, with a new arrangement with Sasol being secured last week.

------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.