Introducing the Rice Nexus. Rendering courtesy of Rice University

Rice University is going beyond the hedges with its hub at the Ion, for which the school has just details and renderings.

For over a year, Rice has been planning its Rice Nexus, a collaborative hub for the university's innovation efforts located in the Ion District, Rice Management Company's 16-acre district in Midtown. Expected to open this fall, the new space will be located across 10,000 square feet on two floors of the Ion.

“We believe in the power of innovation to transform lives and shape the future,” Rice President Reginald DesRoches says in a news release. “With the launch of the Rice Nexus at the Ion, we are embarking on a journey to unleash the full potential of Houston’s innovation ecosystem, driving positive change and rapid economic growth.”

Rendering courtesy of Rice University

The Rice Nexus will provide the university's community with prototyping tools, access to venture capital opportunities, and entrepreneurial support.

“We are thrilled to introduce the Nexus so that our faculty and students can rapidly develop, derisk and deploy solutions into the world by harnessing the full resources and capabilities of the Ion District,” Paul Cherukuri, Rice’s chief innovation officer, adds. “Houston is a grand city of innovation, and the Nexus at the Ion further amplifies Rice as a global leader in inventing and commercializing world-changing technology at both speed and scale.”

Rice reports that three startups founded by faculty — Solidec, Coflux Purification, and DirectH2 — will be located in the facility.

“The critical support provided through the Nexus highlights Rice’s leadership in pioneering essential hard tech development in the middle of the world’s energy capital, revolutionizing the country’s next-generation clean energy and chemical manufacturing technologies while fostering the next generation of innovators in energy sustainability,” says DirectH2 Co-Founder Aditya Mohite, professor of chemical and biomolecular engineering, electrical and computer engineering and materials science and nanoengineering.

Rendering courtesy of Rice University

This week's roundup of Houston innovators includes Melanie Johnson of Collaborative for Children, Aditya Mohite of Rice University, Lani Doyle of Cart.com. Photos courtesy

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a nonprofit leader introducing new technologies, a solar tech-focused Rice University professor, and a new hire for a Houston fast-growing startup.

Melanie Johnson, president and CEO of Collaborative for Children

Collaborative for Children is focused on utilizing social-emotional learning robots and coding tech toys. Photo courtesy

Generally, when children are under the age of five, educators believe that they are best suited for and interested in learning, because those are the years in which there is the strongest opportunity to build a broad and solid foundation for lifelong literacy and well-being.

That sentiment is deeply held by Collaborative for Children, the Houston-based nonprofit organization with the mission to meaningfully improve the quality of early childhood education and provide access to cutting-edge technology through its Centers of Excellence to all children, especially those in low-income and marginalized communities.

“The reason the organization was started about 40 years ago is that a group of philanthropists in the greater Houston area suggested that this was so important because 90 percent of the brain develops or grows in the time frame between ages zero to five years of age,” Melanie Johnson, president and CEO of Collaborative for Children, tells InnovationMap. Read more.

Aditya Mohite, director of Rice Engineering Initiative for Energy Transition and Sustainability

The new process developed by Rice University researchers makes solar cells that are about 10 times more durable than traditional methods. Photo courtesy

Presented on the cover of a June issue of Science, a study from Rice University engineer Aditya Mohite's lab uncovered a method to synthesize a high-efficiency perovskite solar cell, known as formamidinium lead iodide (FAPbI3), converting them into ultrastable high-quality photovoltaic films, according to a statement from Rice. Photovoltaic films convert sunlight into electricity.

The new process makes solar cells that are about 10 times more durable than traditional methods.

“Right now, we think that this is state of the art in terms of stability,” Mohite said in a statement. “Perovskite solar cells have the potential to revolutionize energy production, but achieving long-duration stability has been a significant challenge.” Read more.

Lani Doyle, chief people officer at Cart.com

Fast-growing Cart.com has named its new chief people officer. Photo courtesy of Cart.com

Houston-based e-commerce software and services company Cart.com has hired a former Shopify executive as its chief people officer.

Before joining Cart.com, Lani Doyle was chief HR officer at Strategic Solutions Group, a provider of health care software. Previously, she was vice president of HR and people operations at 6 River Systems, a provider of software and robotics for warehouses. Prior to that, Doyle was head of talent development and operations at Shopify, an e-commerce platform for businesses that posted revenue of $7.1 billion in 2023.

“Cart.com is one of the fastest-growing companies in commerce today, and I’m excited to partner with our teams to help drive growth and scalability,” Doyle says in a news release. “I am eager to contribute to shaping our culture and developing programming that supports and elevates high-performing teams, ensuring we achieve our ambitious goals.” Read more.

The new process developed by Rice University researchers makes solar cells that are about 10 times more durable than traditional methods. Photos by Jeff Fitlow/Rice University

Houston lab sees progress with breakthrough light-harvesting processes

Hi, tech

A groundbreaking Rice University lab has made further strides in its work to make harvesting light energy more efficient and stable.

Presented on the cover of a June issue of Science, a study from Rice engineer Aditya Mohite's lab uncovered a method to synthesize a high-efficiency perovskite solar cell, known as formamidinium lead iodide (FAPbI3), converting them into ultrastable high-quality photovoltaic films, according to a statement from Rice. Photovoltaic films convert sunlight into electricity.

The new process makes solar cells that are about 10 times more durable than traditional methods.

“Right now, we think that this is state of the art in terms of stability,” Mohite said in a statement. “Perovskite solar cells have the potential to revolutionize energy production, but achieving long-duration stability has been a significant challenge.”

The change come from "seasoning" the FAPbI3 with 2D halide perovskites crystals, which the Mohite lab also developed a breakthrough synthesis process for last year

The 2D perovskites helped make the FAPbI3 films more stable. The study showed that films with 2D perovskites deteriorated after two days of generating electricity, while those with 2D perovskites had not started to degrade after 20 days.

“FAPbI3 films templated with 2D crystals were higher quality, showing less internal disorder and exhibiting a stronger response to illumination, which translated as higher efficiency," Isaac Metcalf, a Rice materials science and nanoengineering graduate student and a lead author on the study, said in the statement.

Additionally, researchers say their findings could make developing light-harvesting technologies cheaper, and can also allow light-harvesting panels to be lighter weight and more flexible.

"Perovskites are soluble in solution, so you can take an ink of a perovskite precursor and spread it across a piece of glass, then heat it up and you have the absorber layer for a solar cell,” Metcalf said. “Since you don’t need very high temperatures ⎯ perovskite films can be processed at temperatures below 150 Celsius (302 Fahrenheit) ⎯ in theory that also means perovskite solar panels can be made on plastic or even flexible substrates, which could further reduce costs.”

Mohite adds this has major implications for the energy transition at large.

“If solar electricity doesn’t happen, none of the other processes that rely on green electrons from the grid, such as thermochemical or electrochemical processes for chemical manufacturing, will happen,” Mohite said. “Photovoltaics are absolutely critical.”

The Mohite lab's process for creating 2D perovskites of the ideal thickness and purity was published in Nature Synthesis last fall. At the time, Mohite said the crystals "hold the key to achieving commercially relevant stability for solar cells."

About a year ago, the lab also published its work on developing a scalable photoelectrochemical cell. The research broke records for its solar-to-hydrogen conversion efficiency rate.

———

This article originally ran on EnergyCapital.

Rice University announced a new climate tech initiative backed by Woodside Energy. Photo by Natalie Harms/InnovationMap

Rice University launches $12.5M climate tech accelerator

coming soon

Rice University has announced its latest initiative to advance clean energy technology into commercialization with a new partnership with a global energy company.

Woodside Energy, headquartered in Australia with its global operations in Houston following its 2022 acquisition of BHP Group, has committed $12.5 million over the next five years to create the Woodside Rice Decarbonization Accelerator.

"The goal of the accelerator is to fast track the commercialization of innovative decarbonization technologies created in Rice labs," Rice University President Reginald DesRoches says to a crowd at the Ion at the initiative's announcement. "These technologies have the potential to make better batteries, transitistors, and other critical materials for energy technologies. In addition, the accelerator will work on manufacturing these high-value products from captured and converted carbon dioxide and methane."

"The Woodside Rice Decarbonization Accelerator will build on the work that Rice has been doing in advanced materials, energy, energy transition, and climate for many years. More than 20 percent of our faculty do some related work to energy and climate," he continues. "Harnessing their efforts alongside an esteemed partner like Woodside Energy is an exciting step that will undoubtedly have an impact far and wide."

Woodside, which has over 800 employees based in Houston, has been a partner at the Ion since last spring. Daniel Kalms, Woodside Energy's CTO and executive vice president, explains that the new initiative falls in line with the three goals of Woodside's climate strategy, which includes keeping up with global energy demand, creating value, and conducting its business sustainably. The company has committed a total of $5 billion to new energy by 2030, Kalms says.

"We know that the world needs energy that is more affordable, sustainable, and secure to support the energy transition — and we want to provide that energy. Energy that is affordable, sustainable, and secure requires innovation and the application of new technology. That's what this is about," he says.

"Of course collaboration will be the key," Kalms continues. "By working with researchers, entrepreneurs, leading experts and parallel industries, we can combine our capability to solve collective challenges and create shared opportunities. That's why we are excited to be partnering with Rice."

The accelerator will be run by Paul Cherukuri, vice president of innovation at Rice University, and Aditya Mohite, associate professor of Chemical and Biomolecular Engineering and Materials Science and Nanoengineering. Additional Rice professors will be involved as well, Cherukuri says.

"Success for us will not be papers, it will be products," Cherukuri says of what Woodside wants from the partnership. "We picked faculty at Rice in particular who were interested in taking on this charge, and they were all faculty who created companies."

Last fall, Rice announced a grant and venture initiative to accelerate innovation from Rice in the biotech space.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas is the 4th hardest working state in America, report finds

Ranking It

It's no secret that Texans are hardworking people. To align with the Labor Day holiday, a new WalletHub study asserts that the Lone Star State is one of the five most hardworking states in America for 2025.

The report ranked Texas the fourth most hardworking state this year, indicating that its residents are working harder than ever after the state fell into seventh place in 2024. Texas previously ranked No. 4 in 2019 and 2020, slipped into No. 5 in 2021 and 2022, then continued falling into sixth place in 2023. But now the state is making its way back to the top of the list.

WalletHub's analysts compared all 50 states based on "direct" and "indirect" work factors. The six "direct" work factors included each state's average workweek hours, employment rates, the share of households where no adults work, the share of workers leaving vacation time unused, and other data. The four "indirect" work factors consisted of workers' average commute times, the share of workers with multiple jobs, the annual volunteer hours per resident, and the average leisure time spent per day.

North Dakota landed on top as the most hardworking state in America for 2025 for another year in a row, earning a score of 66.17 points out of a possible 100. For comparison, Texas ranked No. 4 with 57.06 points. Alaska (No. 2), South Dakota (No. 3), and Hawaii (No. 5) round out the top five hardest working states.

Across the study's two main categories, Texas ranked No. 5 in the "direct" work factors ranking, and earned a respectable No. 18 rank for its "indirect" work factors.

Broken down further, Texans have the second-longest average workweek hours in America, and they have the 12th best average commute times. Texans have the 6th lowest amount of average leisure time spent per day, the report also found.

According to the study's findings, many Americans nationwide won't take the chance to not work as hard when presented with the opportunity. A 2024 Sorbet PTO report found 33 percent of Americans' paid time off was left unused in 2023.

"While leaving vacation time on the table may seem strange to some people, there are plenty of reasons why workers choose to do so," the report's author wrote. "Some fear that if they take time off they will look less dedicated to the job than other employees, risking a layoff. Others worry about falling behind on their work or are concerned that the normal workflow will not be able to function without them."

The top 10 hardest working states are:

  • No. 1 – North Dakota
  • No. 2 – Alaska
  • No. 3 – South Dakota
  • No. 4 – Texas
  • No. 5 – Hawaii
  • No. 6 – Virginia
  • No. 7 – New Hampshire
  • No. 8 – Wyoming
  • No. 9 – Maryland
  • No. 10 – Nebraska
---

This story originally appeared on CultureMap.com.

Houston femtech co. debuts new lactation and wellness pods

mom pod

Houston-based femtech company Work&, previously known as Work&Mother, has introduced new products in recent months aimed at supporting working mothers and the overall health of all employees.

The company's new Lactation Pod and Hybrid Pod serve as dual-use lactation and wellness spaces to meet employer demand, the company shared in a news release. The compact pods offer flexible design options that can serve permanent offices and nearly all commercial spaces.

They feature a fully compliant lactation station while also offering wellness functionalities that can support meditation, mental health, telehealth and prayer. In line with Work&'s other spaces, the pods utilize the Work& scheduling platform, which prioritizes lactation bookings to help employers comply with the PUMP Act.

“This isn’t about perks,” Jules Lairson, Work& co-founder and COO, said in the release. “It’s about meeting people where they are—with dignity and intentional design. That includes the mother returning to work, the employee managing anxiety, and everyone in between.”

According to the company, several Fortune 500 companies are already using the pods, and Work& has plans to grow the products' reach.

Earlier this year, Work& introduced its first employee wellness space at MetroNational’s Memorial City Plazas, representing Work&'s shift to offer an array of holistic health and wellness solutions for landlords and tenants.

The company, founded in 2017 by Lairson and CEO Abbey Donnell, was initially focused on outfitting commercial buildings with lactation accommodations for working parents. While Work& still offers these services through its Work&Mother branch, the addition of its Work&Wellbeing arm allowed the company to also address the broader wellness needs of all employees.

The company rebranded as Work& earlier this year.