Debbie Mercer, a Houston entrepreneur, has designed articles of clothing to empower female athletes. Photo courtesy of Zip Hers

It was race day for avid marathon runner, Debbie Mercer. She and her race pack got up early on a brisk winter's day in Chicago, Illinois, piling on warm layers over their compression tights, to run the Chicago Marathon.

Miles into the race, Mercer and her friends made a pit stop at the portable bathrooms. The female runners stood in long lines, awaiting their turns to do their business behind closed doors, while their male friends resorted to quickly and discreetly ducking behind the porta-potties, or finding nearby trees. Precious time ticked by as the women watched their male counterparts continue the race.

"I remember thinking 'I wish there was some way that we could do that too,'" Mercer recalls.

The Houstonian created Zip Hers, an activewear brand that has a full-length zipper lining the bikini area of each pant, to accommodate on-the-go women. The Zip Hers concept and design was intended to level the playing field for women and men when it comes to competitive sports.

"If we're wasting time on a bathroom break and they're not, that holds us back…Maybe it's our little tiny contribution to women's equality. We just really want to help women be the best that they can be," Mercer says.

From full-length pants and tights, to 3-inch compression or loose shorts, Zip Hers has established an array of products suitable active women. However, it was a long and winding road to producing such innovative, high-quality products that could be competitive in such a vast industry of activewear, according to Mercer.

Zip Hers in the making

Photo courtesy of Zip Hers

Mercer kicked off prototype production in 2016. She jumped around to various designers and manufacturers, turning away samples that didn't quite fit her vision for the product. Part of the challenge, Mercer describes, was finding a manufacturer who could manipulate stretch and non-stretch fabric in high-quality ways. Maintaining maximum comfort and a sleek design were challenges when the new variable of a zipper was thrown into the mix.

"It took us a while to get the zipper design perfect so that it would fit well and have a design that was comfortable," Mercer says. "We had to find the right manufacturer to find the skill to make these. We found one in Dallas and one in Houston."

Through trial and error, the Zip Hers design team produced a smooth design that coexists seamlessly with the delicate areas that sit around the zipper. They created a custom-made zipper pull, an invisible, thin disk embossed with the Zip Hers logo.

"Women can easily grab it when they're squatting, and don't have to struggle to find it… you can't even tell that a zipper is there. It's very sleek," Mercer says. "They're all handmade. We have to have special fabric for the panels and…have to have special machines to get the seams just right."

By September 2019, the Zip Hers prototype was finalized and officially launched via the company's online retail site.

Game changers

Photo courtesy of Zip Hers

Zip Hers products, the first of their kind, are sure to change the game for female marathon runners, hikers and any other outdoor activity fanatics, Mercer says. With so many athletic brands available on the internet, Mercer hopes that Zip Hers' innovative approach to active wear, and the unique opportunity they offer to women, will help set the brand apart.

"We really don't see any other products out there like ours…As far as apparel goes, we're the only one," Mercer says.

Since launching last year, Zip Hers has watched their clientele expand with predominantly long distance runners and adventure goers. With the 'athleisure' trend on the rise, they're also seeing more women buying leisurewear for yoga classes, or indoor casual use. Mercer says that she hopes Zip Hers will continue to expand to reach female fishers, hunters, climbers, and even first responders, so that women never have to take off their duty belts.

From various race-day experiences of waiting in long bathroom lines as precious time ticks by, to when nature calls during outdoor activities involving co-ed company, Mercer confronted women's realities by proposing an empowering solution for women.

"Ultimately, it gives women a choice. What's more empowering for women than the power to choose what's best for them?" Mercer says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”