Construction is underway on the sustainable 3D-printed community. Courtesy of Cole Klein Builders

Houston is putting itself front-and-center to help make sustainable, affordable housing a reality for 80 homeowners in an innovative scalable housing community. Developer Cole Klein Builders has partnered with HiveASMBLD to pioneer what’s touted as the world’s first large-scale, one-of-a-kind, affordable housing development using 3D printing technology — merging robotics, design, and sustainability.

Located across from Sterling Aviation High School, near Hobby Airport, Zuri Gardens will offer 80 two-bedroom, two-bathroom homes of approximately 1,360 square feet, situated in a park-like setting that includes walking trails and a community green space.

Homes in Zuri Gardens will hit the market in early summer of 2026. Final pricing has yet to be determined, but Cole Klein Builders expects it to be in the mid-to-high 200s.

Interestingly, none of the homes will offer garages or driveways, which the developer says will provide a cost savings of $25,000-$40,000 per home. Instead of parking for individual units, 140 parking spaces will be provided.

Each two-story home is comprised of a ground floor printed by HiveASMBLD, using a proprietary low-carbon cement alternative by Eco Material Technologies that promises to enhance strength and reduce CO2 emissions. The hybrid homes will have a second floor built using engineered wood building products by LP Building Solutions. Overall, the homes are designed to be flood, fire, and possibly even tornado-proof.

The "Zuri" in Zuri Gardens is the Swahili word for “beautiful,” a choice that is fitting considering that the parks department will be introducing a five acre park to the project — with 3D-printed pavilions and benches — plus, a three-acre farm is located right across the street. The Garver Heights area is classified as a food desert, which means that access to fresh food is limited. Residents will have access to the farm’s fresh produce, plus opportunities to participate in gardening and nutrition workshops.

zuri gardens 3d-printed housing community First large-scale affordable housing project of 3D-printed homes rises in Houston Zuri Gardens is getting closer to completion. Courtesy rendering

Cole Klein Builders created Zuri Gardens in partnership with the Houston Housing Community Development Department, who provided infrastructure reimbursements for the roads, sewer lines, and water lines. In return, CKB agreed to push the purchase prices for the homes as low as possible.

Zuri Gardens also received $1.8 million dollars from the Uptown Tourism Bond, 34 percent of which must be used with minority-owned small businesses. Qualified buyers must fit a certain area of median income according to HUD guidelines, and homes must be owner-occupied at all times. Zuri Gardens already has an 800-person waitlist.

“They’re trying to bridge that gap to make sure there is a community for the homebuyers who need it — educators, law enforcement, civil workers, etc.,” Cole Klein Builders’ co-principal Vanessa Cole says. “You have to go through a certification process with the housing department to make sure that your income is in alignment for this community. It has been great, and everyone has been really receptive.”

Cole has also brought insurance underwriters to visit the site and to help drive premiums below regular rates for Houston homeowners, as claim risks for one of the 3D homes are extremely low.

Tim Lankau, principal at HiveASMBLD, notes that the 3D hybrid design allows for a more traditional appearance, while having the benefits of a concrete structure: “That’s where the floodwaters would go, that’s where you can hide when there’s a tornado, and that’s where termites would eat. So you get the advantages of it while having a traditionally-framed second floor.”

It’s important to note that Zuri Gardens is not located in a flood prone area, nor did it flood during Hurricane Harvey — being flood-proof is merely a perk of a cement house. The concrete that Eco Material Technologies developed is impervious. The walls are printed into hollow forms, which house rebar, plumbing, and accessible conduits for things like electrical lines and smart house features. Those walls are then filled with a foamcrete product that expands to form a “monolithic concrete wall.”

David McNitt, of Eco Material Technologies, explains that his proprietary concrete is made of PCV, and contains zero Portland cement. Instead, McNitt’s cement is made from coal ash and is 99 percent green (there are a few chemicals added to the ash). Regardless, it’s made from 100 percent waste products.

“This is a product that has really been landfilled before,” says McNitt. “It’s coal ash, and it’ll set within 8-10 minutes. It’s all monolithic, and one continuous pour — it’s literally all one piece.”

Eco Material Technologies’ concrete product is impressively durable. A traditional cinderblock wall will crush at around 800 psi, while this material crushes at about 8,000 psi.

“It’s ten times stronger than a cinderblock wall that can withstand hurricanes,” claims McNitt. “I don’t think you’d even notice a hurricane. It’ll be really quiet inside, too — so you won’t get interrupted during your hurricane party. It’s way over-engineered, it really is.”

The second story is built using weatherproof and eco-friendly products by LP Building Solutions. Their treated, engineered wood products come with a 50 year warranty, and their radiant barrier roof decking product blocks 97% of UV rays, and keeps attic temperatures 30° cooler than traditional building materials. These materials, combined with the concrete first floor, will keep heating and cooling costs low — something the folks at HiveASMBLD refer to as “thermal mass performance.”

---

This article originally appeared on CultureMap.com.

A 3-D printed home could be built in 48 hours for only $10,000. Photo courtesy of ICON Build

Texas startup receives $9M to build affordable 3-D printed houses

High-tech homes

In the not-too-distant future, a Texas company's 3-D printed homes will be popping up across the world for a fraction of the cost of traditional homes.

"It's our mission at ICON to reimagine the approach to homebuilding and construction and make affordable, dignified housing available to everyone throughout the world," says Jason Ballard, co-founder and CEO of Austin-based ICON LLC. "We're in the middle of a global housing crisis, and making old approaches a little better is not solving the problem."

The 3-D printed homes startup just raked in $9 million in seed funding from a host of investors, including Fort Worth-based homebuilding giant D.R. Horton; Vulcan Capital, a Seattle investment firm launched by Microsoft billionaire Paul Allen, who died October 15; Austin startup accelerator Capital Factory; Austin real estate developer Cielo Property Group; and San Francisco venture capital firm Oakhouse Partners, which is the lead investor.

At this point, ICON executives aren't sure when their homes will be popping up around town. However, Ballard tells CultureMap, "serious conversations" are underway about bringing these homes to Austin and other places around the world.

In March, ICON reaped tons of press when it unveiled a 350-square-foot 3-D home at SXSW — the first home of its kind to receive a construction permit in the U.S. At the time, ICON executives said the home — constructed of concrete and printed in less than 48 hours by 3-D printing robots — cost less than $10,000. By contrast, the median price in September 2018 of a single-family home in the Austin metro area was $302,250.

ICON's first batch of homes is planned for a project in impoverished El Salvador that's being developed in conjunction with New Story, a San Francisco nonprofit that seeks to eradicate homelessness. The first homes there are scheduled to be printed next year.

ICON is targeting a per-home cost of $4,000 in El Salvador. Relying on technology upgrades, ICON hopes to create each 3-D home in less than 24 hours.

"While prices to print homes will vary from country to country and state to state," Ballard says, "the big takeaway is that downloading and printing a home has the potential to cost half of standard construction costs."

Homes at the development in El Salvador will measure 600 to 800 square feet — around the size of a typical one-bedroom apartment. Eventually, ICON aims to print homes in the 1,500- to 2,000-square-foot range.

Among the advantages of 3-D printed homes cited by ICON are:

  • Speedy construction
  • No manual labor
  • Little generation of leftover construction materials
  • "Tremendous" design freedom

There's a positive environmental impact with this construction process as well.

"Conventional construction is slow, fragmented, wasteful, and has poor thermal properties that increase energy use, increase operating costs, and decrease comfort," Ballard says. "Also, conventional materials like drywall and particleboard are some of the least resilient materials ever invented."

---

This story originally appeared on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.