what's trending

5 most popular innovation stories in Houston this week

Space commercialization still has its challenges, how hospitals have been advanced amid COVID-19, Houston innovators to know, and more trending innovation news from this week. Photo via NASA/Unsplash

Editor's note:Another week has come and gone, and it's time to round up the top headlines from the past few days. Trending Houston tech and startup news on InnovationMap included innovators to know, a guest column on the challenges of space commercialization, a Q&A with an energy innovation leader, and more.

3 Houston innovators to know this week

This week's roundup of Houston innovators includes Chris Howard of Softeq, Stephanie Hertzog of Sodexo, and Moody Heard of Buildforce. Courtesy photos

In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — oil and gas, tech development, and construction staffing — recently making headlines in Houston innovation. Continue reading.

Houston, we're trying to fix the problem: Aerospace challenges and future exploration

You've heard "it's not rocket science" throughout your life, but but turns out that aerospace exploration — even in 2021 — is still very hard. Photo via Pexels

If there is anything that goes hand in hand so perfectly, it's Houston and Space. Houston is home to the Johnson Space Center, named after former president Lyndon B. Johnson, and is home to revolutionary space research projects and spaceflight training for both crew members and flight controllers. While it's every kid's dream to become an astronaut, have you ever wondered why rocket science is actually so difficult?

Though the space race of the '70s has been over for some time, the new space race — the race to Mars and the commercialization of space tourism — has just started. Elon Musk, Jeff Bezos, and Richard Branson are spearheading the "Billionaire space race." But even with their billions being put into developing spaceports, NASA rocket partnerships, and planning future Mars missions, rocket science is just as difficult to implement as it was the first time around.

So why, even with billions of dollars at their disposal and many companies pushing for more funding, are scientists and engineers still struggling to make rocket travel an everyday thing? Here are some of the countless reasons why rockets science is insanely difficult, no matter how much money you throw at it. Continue reading.

Houston expert: Hospitals are at the forefront of innovation due to pandemic

As we enter year two of the pandemic, the way hospitals function now and in the future is forever changed. Photo via Getty Images

The COVID-19 pandemic has had a drastic effect on every industry throughout the world. Additionally, we have all experienced multiple changes to our daily routine such as schools implementing virtual and hybrid learning while reconfiguring classrooms to promote social distancing and fitness studios closing off every other cardio machine and bench.

But no industry has had to pivot and innovate more than health care, which has been ground zero for the pandemic.

The pace of innovation for hospitals has been at breakneck speed — from the evolution of new treatment protocols to the need to reconfigure physical spaces to support an influx of patients while also promoting a healing environment during this unprecedented time. Continue reading.

Houston CEO talks augmented reality, diversity, how it will all play a role in the energy transition

Stephanie Hertzog, CEO of Houston-based Sodexo, shares how she's embracing diversity and innovation within the energy industry. Photo courtesy of Sodexo

When Stephanie Hertzog first started her role as CEO of Houston-based Sodexo Energy & Resources North America in the fall of 2019, she was on the road every week visiting some of the facility management company's 100 million customers.

"I actually had a conversation with my assistant in early March, and said, 'Okay, our goal is that by April, I not be on the road every week. Let's try to get this to at least every other week,'" she recalls. Shortly after, the world changed, and by March 10 she halted all travel and was forced to lead her company to innovate in more ways than one.

"When we think about innovation, we often think about technology, but we've had to innovate so much in the last 12 months, in how we do everything," she says. "We've really asked a lot of our teams over the last year in regard to having to rethink how they do things and be innovative and adapt." Continue reading.

Houston startup with life-saving innovation receives $2M grant

Houston-based PolyVascular has invented a polymer-based heart valve for children with congenital heart disease. Photo courtesy of TMC Innovation

A $2 million federal grant will enable Houston-based PolyVascular to launch human trials of what it hails as the first polymer-based heart valve for children.

In conjunction with the grant, Dr. Will Clifton has joined the medical device company as chief operating officer. He will oversee the grant as principal investigator, and will manage the company's operations and R&D. Clifton is president and co-founder of Houston-based Enventure, a medical innovation incubator and education hub. He previously was senior director of medical affairs at Houston-based Procyrion, a clinical-stage medical device company.

PolyVascular's Phase II grant came from the Small Business Innovation Research (SBIR) program, which promotes technological projects. Continue reading.

Trending News

 
 

Promoted

A research team housed out of the newly launched Rice Biotech Launch Pad received funding to scale tech that could slash cancer deaths in half. Photo via Rice University

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

Trending News

 
 

Promoted