The SMART Hub is a collection of researchers, engineers, and economic and policy experts looking to “enact a paradigm shift in the use and management of the wireless spectrum.” Photo via Getty Images

The University of Houston has signed on to be a part of an organization that is working toward next-gen technology for defense purposes.

UH has announced its partnership with the Department of Defense Spectrum Innovation Center’s Spectrum Management with Adaptive and Reconfigurable Technology (SMART) Hub, which aims to conduct spectrum research to help with national defense needs. SMART Hub will develop next-generation technologies, and the research team will contribute expertise in spectrum security, economics, communication systems, radar, circuits, policy, and more.

The center is led by Baylor University, and is a collection of researchers, engineers, and economic and policy experts looking to “enact a paradigm shift in the use and management of the wireless spectrum” according to SMART Hub. The consortium is worth $5 million, and comes after UH recently awarded its largest grant in history—$63.5 million from the U.S. DoD. The previous DoD contract aims to support the campus in developing analytical modeling and simulation platforms for the U.S. Army.

Growth in use of electronic devices has led to the jamming of the bandwidth available in the wireless spectrum (radio, TV, wireless phone signals). SMART Hub will focus on new approaches of spectrum communication to assist military and corporate organizations that will confront this issue more than before. SMART Hub will combine efforts of 29 researchers at 17 institutions.

“We will be working on groundbreaking technology that will revolutionize how we use the spectrum,” professor of electrical and computer engineering at Baylor and director of the efforts Charles Baylis said in a news release. “Rather than fixed systems that use the same frequency and stay there, we’re designing systems that can adapt to their surroundings and determine how to successfully transmit and receive. It’s a true paradigm shift that requires the type of collaboration we will have in SMART Hub.”

UH’s SMART Hub team, which will be tasked to produce strategies for enhanced communication in challenging spaces like regions having electromagnetic interference, forests, inner city environments, or mountainous terrains, includes:

  • David Jackson, professor of electrical and computer engineering
  • Zhu Han, Moores Professor of electrical engineering
  • Daniel Onofrei, associate professor of mathematics

From left, the UH SMART Hub team includes: Daniel Onofrei, associate professor of mathematics; David Jackson, professor of electrical and computer engineering; and Zhu Han, Moores Professor of electrical engineering.

The UH software will help DrillDocs customers make better and safer decisions out on the rigs. Photo via Getty Images

Startup taps UH-licensed technology to better optimize rig analytics

here's the drill

A Houston startup has tapped into the know-how of three University of Houston professors to help improve oil and gas drilling operations.

The startup, DrillDocs, has licensed software developed by UH professors Jiefu Chen, Xuqing (Jason) Wu, and Zhu Han that enables real-time analysis of activity at onshore and offshore drilling rigs. Specifically, the software examines video to help classify the volume of cuttings from the shale-shaker components of drilling equipment.

According to the American Association of Petroleum Geologists, cuttings are small pieces of rock that are chipped away by a bit while a well is being drilled. The fragments then travel from the bit to the surface of the water, where they can be "caught" and studied. Drill cuttings often yield the only rock data gained from a well.

"Cutting analysis is an important task for an efficient, low-cost, and risk-free drilling execution," Chen says in a UH news release.

According to the news release, the UH software will study the cutting data to help DrillDocs customers "make more informed drilling decisions, reduce safety and environmental risks, and improve drilling performance and production."

Drilling technicians usually must repeatedly study cuttings manually, which can stifle progress and lead to human errors, according to UH.

Calvin Holt and Francois Ruel co-founded DrillDocs in 2020. The bootstrapped startup is developing the CleanSight system, which monitors shale-shaker components in an effort to reduce drilling costs and risks. DrillDocs' surface-based computer vision system can deliver data via laptops, smartphones, and other devices about the size, shape, and quantity of rocks floating to the surface.

In March, DrillDocs was identified as one of the four most promising startups that participated in a CERAWeek pitch competition.

"We're taking computer vision to the drilling rig," Holt, CEO of DrillDocs, said during his pitch. "Now, for the first time, drilling and geomechanics teams will have unique, real-time data to ascertain the well's condition."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas space co. takes giant step toward lunar excavator deployment

Out of this world

Lunar exploration and development are currently hampered by the fact that the moon is largely devoid of necessary infrastructure, like spaceports. Such amenities need to be constructed remotely by autonomous vehicles, and making effective devices that can survive the harsh lunar surface long enough to complete construction projects is daunting.

Enter San Antonio-based Astroport Space Technologies. Founded in San Antonio in 2020, the company has become a major part of building plans beyond Earth, via its prototype excavator, and in early February, it completed an important field test of its new lunar excavator.

The new excavator is designed to function with California-based Astrolab's Flexible Logistics and Exploration (FLEX) rover, a highly modular vehicle that will perform a variety of functions on the surface of the moon.

In a recent demo, the Astroport prototype excavator successfully integrated with FLEX and proceeded to dig in a simulated lunar surface. The excavator collected an average of 207 lbs (94kg) of regolith (lunar surface dust) in just 3.5 minutes. It will need that speed to move the estimated 3,723 tons (3,378 tonnes) of regolith needed for a lunar spaceport.

After the successful test, both Astroport and Astrolab expressed confidence that the excavator was ready for deployment. "Leading with this successful excavator demo proves that our technology is no longer theoretical—it is operational," said Sam Ximenes, CEO of Astroport.

"This is the first of many implements in development that will turn Astrolab's FLEX rover into the 'Swiss Army Knife' of lunar construction. To meet the infrastructure needs of the emerging lunar economy, we must build the 'Port' before the 'Ship' arrives. By leveraging the FLEX platform, we are providing the Space Force, NASA, and commercial partners with a 'Shovel-Ready' construction capability to secure the lunar high ground."

"We are excited to provide the mobility backbone for Astroport's groundbreaking construction technology," said Jaret Matthews, CEO of Astrolab, in a release. "Astrolab is dedicated to establishing a viable lunar ecosystem. By combining our FLEX rover's versatility with Astroport's civil engineering expertise, we are delivering the essential capabilities required for a sustainable lunar economy."

---

This article originally appeared on CultureMap.com.

Houston biotech co. raises $11M to advance ALS drug development

drug money

Houston-based clinical-stage biotechnology company Coya Therapeutics (NASDAQ: COYA) has raised $11.1 million in a private investment round.

India-based pharmaceuticals company Dr. Reddy’s Laboratories Inc. led the round with a $10 million investment, according to a news release. New York-based investment firm Greenlight Capital, Coya’s largest institutional shareholder, contributed $1.1 million.

The funding was raised through a definitive securities purchase agreement for the purchase and sale of more than 2.5 million shares of Coya's common stock in a private placement at $4.40 per share.

Coya reports that it plans to use the proceeds to scale up manufacturing of low-dose interleukin-2 (IL-2), which is a component of its COYA 302 and will support the commercial readiness of the drug. COYA 302 enhances anti-inflammatory T cell function and suppresses harmful immune activity for treatment of Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Dementia (FTD), Parkinson’s disease and Alzheimer’s disease.

The company received FDA acceptance for its investigational new drug application for COYA 302 for treating ALS and FTD this summer. Its ALSTARS Phase 2 clinical trial for ALS treatment launched this fall in the U.S. and Canada and has begun enrolling and dosing patients. Coya CEO Arun Swaminathan said in a letter to investors that the company also plans to advance its clinical programs for the drug for FTD therapy in 2026.

Coya was founded in 2021. The company merged with Nicoya Health Inc. in 2020 and raised $10 million in its series A the same year. It closed its IPO in January 2023 for more than $15 million. Its therapeutics uses innovative work from Houston Methodist's Dr. Stanley H. Appel.

New accelerator for AI startups to launch at Houston's Ion this spring

The Collectiv Foundation and Rice University have established a sports, health and wellness startup accelerator at the Ion District’s Collectiv, a sports-focused venture capital platform.

The AI Native Dual-Use Sports, Health & Wellness Accelerator, scheduled to formally launch in March, will back early-stage startups developing AI for the sports, health and wellness markets. Accelerator participants will gain access to a host of opportunities with:

  • Mentors
  • Advisers
  • Pro sports teams and leagues
  • University athletics programs
  • Health care systems
  • Corporate partners
  • VC firms
  • Pilot projects
  • University-based entrepreneurship and business initiatives

Accelerator participants will focus on sports tech verticals inlcuding performance and health, fan experience and media platforms, data and analytics, and infrastructure.

“Houston is quickly becoming one of the most important innovation hubs at the intersection of sports, health, and AI,” Ashley DeWalt, co-founder and managing partner of The Collectiv and founder of The Collectiv Foundation, said in a news release.

“By launching this platform with Rice University in the Ion District,” he added, “we are building a category-defining acceleration engine that gives founders access to world-class research, global sports properties, hospital systems, and venture capital. This is about turning sports-validated technology into globally scalable companies at a moment when the world’s attention is converging on Houston ahead of the 2026 World Cup.”

The Collectiv accelerator will draw on expertise from organizations such as the Rice-Houston Methodist Center for Human Performance, Rice Brain Institute, Rice Gateway Project and the Texas Medical Center.

“The combination of Rice University’s research leadership, Houston’s unmatched health ecosystem, and The Collectiv’s operator-driven investment platform creates a powerful acceleration engine,” Blair Garrou, co-founder and managing partner of the Mercury Fund VC firm and a senior adviser for The Collectiv, added in the release.

Additional details on programming, partners and application timelines are expected to be announced in the coming weeks.