Houston-based Dr. Theodoros Voloyiannis was one of six involved in a remote surgery in space demonstration. Photo courtesy of Texas Oncology

A small surgical robot at the International Space Station completed its first surgery demo in zero gravity last week, and one of the surgeons tasked with the remote robotic operations on simulated tissue was Houston-based Dr. Theodoros Voloyiannis.

Voloyiannis took part in what is being referred to as “surgery in space” by being one of the six doctors remotely controlling spaceMIRA — Miniaturized In Vivo Robotic Assistant — that performed several operations on simulated tissue at the lab located in the space station. The surgeons operated remotely from earth in Lincoln, Nebraska. The remote surgeons worked to control the robot's hands to provide tension to the simulated tissue made of rubber bands. They then used the other hand to dissect the elastic tissue with scissors.

“I said during the procedure ‘it was a small rubber band cut, but a great leap for surgery,’“ Voloyiannis tells InnovationMap. “This was a huge milestone for me personally in my career.”

The robot was developed by Virtual Incision Corporation, and made possible through a partnership between NASA and the University of Nebraska. The team of surgeons took part in a demonstration that is considered a common surgical task, as they dissected the correct piece of tissue under pressure.

Latency is the time delay between when the command is sent and the robot receives it, and that was the big challenge the team faced. The delay was about 0.85 of a second according to what the colorectal surgeon who worked on spaceMIRA Dr. Michael Jobst said to CNN. The demo overall was a success according to the team, and posed a new-found adrenaline rush due to the groundbreaking innovation.

“The excitement of the new and the unknown,” Voloyiannis says on the feeling of doing the first operation of its kind. “I never thought I’d be doing something like this when I was in training and in medical school.”

Voloyiannis serves as the chairman of colon and rectal surgery for The US Oncology Network. He was chosen for this experiment due to his experience and expertise performing robotic colorectal surgery. Voloyiannis and the developers are hopeful that this type of technology will soon allow doctors to perform this specialized robotic surgery on patients living in rural areas without a specialized surgeon nearby, military battlefields, as well as regularly in space one day.

“The same concept of remote surgery regularly in space could certainly be entertained,” Voloyiannis says. “When you do things with an absence of gravity and perform a surgery in that environment — of course that changes the way we do things. When you have an absence of gravity with bodily fluids, it is a very hard surgery, but with partial gravity that idea can be entertained.

"Remotely, internet connectivity would have to be considered and you’d have someone remote like me here, while potentially there you’d have someone with less training doing the procedure there guiding the robot," he continues. "It’s quite the concept though.”

The doctors had to account for nearly a second of delay in connectivity. Photo courtesy of Texas Oncology

A mixed reality lab at the University of Houston is merging the physical and digital worlds. Photo via UH.edu

UH lab using mixed reality to optimize designs for the Moon and Mars

hi, tech

University of Houston researchers and students are bringing multiple realities together to help improve the design process for crewed space missions.

Helmed by Vittorio Netti, a researcher for UH and a space architect, the university has launched an XR Lab within the University of Houston architecture building. The lab allows researchers to combine mixed reality (MR), virtual reality (VR), augmented reality (AR) and extended reality (XR) to "blend the physical and digital worlds" to give designers a better understanding of life in space, according to a release from UH.

In the lab researchers can wear MY space suits and goggles, take a VR space walk, or feel what it's like to float to the International Space Station with the help of XR and a crane.

The area in which the researchers conduct this work is known as the "cage" and was developed during a six-month research and design study of lunar surface architecture sponsored by Boeing, which aimed to learn more about the design of a lunar terrain vehicle and a small lunar habitat.

The work is part of UH's Sasakawa International Center of Space Architecture (SICSA), which is led by Olga Bannova, a research associate professor and director of the space architecture graduate program at UH.

She says work like this will drastically cut down research and development time when designing space structures.

“These technologies should be harnessed to mitigate the dependency on physical prototyping of assets and help optimize the design process, drastically reducing research-and-development time and providing a higher level of immersion,” Bannova said in a statement.

Today the research team is shifting its focus on designing for a Mars landing. In the future, they aim to demonstrate and test the system for habitats designed for both lunar and Martian surfaces. They are also working with Boeing to test designs in microgravity, or zero gravity, which exists inside the International Space Station.

Mixed Reality Raising the Bar for Space Architecture on the Moon and MarsStep into this 'Cage' at the University of Houston where physical and digital worlds are merged, allowing students to see and ...

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University's edtech company receives $90M to lead NSF research hub

major collaboration

An educational technology company based out of Rice University has received $90 million to create and lead a research and development hub for inclusive learning and education research. It's the largest research award in the history of the university.

OpenStax received the grant funding from the U.S. National Science Foundation for a five-year project create the R&D hub called SafeInsights, which "will enable extensive, long-term research on the predictors of effective learning while protecting student privacy," reads a news release from Rice. It's the NSF's largest single investment commitment to national sale education R&D infrastructure.

“We are thrilled to announce an investment of $90 million in SafeInsights, marking a significant step forward in our commitment to advancing scientific research in STEM education,” NSF Director Sethuraman Panchanathan says in the release. “There is an urgent need for research-informed strategies capable of transforming educational systems, empowering our nation’s workforce and propelling discoveries in the science of learning.

"By investing in cutting-edge infrastructure and fostering collaboration among researchers and educators, we are paving the way for transformative discoveries and equitable opportunities for learners across the nation.”

SafeInsights is funded through NSF’s Mid-scale Research Infrastructure-2 (Mid-scale RI-2) program and will act as a central hub for 80 partners and collaborating institutions.

“SafeInsights represents a pivotal moment for Rice University and a testament to our nation’s commitment to educational research,” Rice President Reginald DesRoches adds. “It will accelerate student learning through studies that result in more innovative, evidence-based tools and practices.”

Richard Baraniuk, who founded OpenStax and is a Rice professor, will lead SafeInsights. He says he hopes the initiative will allow progress to be made for students learning in various contexts.

“Learning is complex," Baraniuk says in the release. "Research can tackle this complexity and help get the right tools into the hands of educators and students, but to do so, we need reliable information on how students learn. Just as progress in health care research sparked stunning advances in personalized medicine, we need similar precision in education to support all students, particularly those from underrepresented and low-income backgrounds.”

OpenStax awarded $90M to lead NSF research hub for transformational learning and education researchwww.youtube.com

2 Houston startups selected by US military for geothermal projects

hot new recruits

Two clean energy companies in Houston have been recruited for geothermal projects at U.S. military installations.

Fervo Energy is exploring the potential for a geothermal energy system at Naval Air Station Fallon in Nevada.

Meanwhile, Sage Geosystems is working on an exploratory geothermal project for the Army’s Fort Bliss post in Texas. The Bliss project is the third U.S. Department of Defense geothermal initiative in the Lone Star State.

“Energy resilience for the U.S. military is essential in an increasingly digital and electric world, and we are pleased to help the U.S. Army and [the Defense Innovation Unit] to support energy resilience at Fort Bliss,” Cindy Taff, CEO of Sage, says in a news release.

A spokeswoman for Fervo declined to comment.

Andy Sabin, director of the Navy’s Geothermal Program Office, says in a military news release that previous geothermal exploration efforts indicate the Fallon facility “is ideally suited for enhanced geothermal systems to be deployed onsite.”

As for the Fort Bliss project, Michael Jones, a project director in the Army Office of Energy Initiatives, says it’ll combine geothermal technology with innovations from the oil and gas sector.

“This initiative adds to the momentum of Texas as a leader in the ‘geothermal anywhere’ revolution, leveraging the robust oil and gas industry profile in the state,” says Ken Wisian, associate director of the Environmental Division at the U.S. Bureau of Economic Geology.

The Department of Defense kicked off its geothermal initiative in September 2023. Specifically, the Army, Navy, and Defense Innovation Unit launched four exploratory geothermal projects at three U.S. military installations.

One of the three installations is the Air Force’s Joint Base San Antonio. Canada-based geothermal company Eavor is leading the San Antonio project.

Another geothermal company, Atlanta-based Teverra, was tapped for an exploratory geothermal project at the Army’s Fort Wainwright in Alaska. Teverra maintains an office in Houston.

------

This article originally ran on EnergyCapital.