Houston-based Dr. Theodoros Voloyiannis was one of six involved in a remote surgery in space demonstration. Photo courtesy of Texas Oncology

A small surgical robot at the International Space Station completed its first surgery demo in zero gravity last week, and one of the surgeons tasked with the remote robotic operations on simulated tissue was Houston-based Dr. Theodoros Voloyiannis.

Voloyiannis took part in what is being referred to as “surgery in space” by being one of the six doctors remotely controlling spaceMIRA — Miniaturized In Vivo Robotic Assistant — that performed several operations on simulated tissue at the lab located in the space station. The surgeons operated remotely from earth in Lincoln, Nebraska. The remote surgeons worked to control the robot's hands to provide tension to the simulated tissue made of rubber bands. They then used the other hand to dissect the elastic tissue with scissors.

“I said during the procedure ‘it was a small rubber band cut, but a great leap for surgery,’“ Voloyiannis tells InnovationMap. “This was a huge milestone for me personally in my career.”

The robot was developed by Virtual Incision Corporation, and made possible through a partnership between NASA and the University of Nebraska. The team of surgeons took part in a demonstration that is considered a common surgical task, as they dissected the correct piece of tissue under pressure.

Latency is the time delay between when the command is sent and the robot receives it, and that was the big challenge the team faced. The delay was about 0.85 of a second according to what the colorectal surgeon who worked on spaceMIRA Dr. Michael Jobst said to CNN. The demo overall was a success according to the team, and posed a new-found adrenaline rush due to the groundbreaking innovation.

“The excitement of the new and the unknown,” Voloyiannis says on the feeling of doing the first operation of its kind. “I never thought I’d be doing something like this when I was in training and in medical school.”

Voloyiannis serves as the chairman of colon and rectal surgery for The US Oncology Network. He was chosen for this experiment due to his experience and expertise performing robotic colorectal surgery. Voloyiannis and the developers are hopeful that this type of technology will soon allow doctors to perform this specialized robotic surgery on patients living in rural areas without a specialized surgeon nearby, military battlefields, as well as regularly in space one day.

“The same concept of remote surgery regularly in space could certainly be entertained,” Voloyiannis says. “When you do things with an absence of gravity and perform a surgery in that environment — of course that changes the way we do things. When you have an absence of gravity with bodily fluids, it is a very hard surgery, but with partial gravity that idea can be entertained.

"Remotely, internet connectivity would have to be considered and you’d have someone remote like me here, while potentially there you’d have someone with less training doing the procedure there guiding the robot," he continues. "It’s quite the concept though.”

The doctors had to account for nearly a second of delay in connectivity. Photo courtesy of Texas Oncology

A mixed reality lab at the University of Houston is merging the physical and digital worlds. Photo via UH.edu

UH lab using mixed reality to optimize designs for the Moon and Mars

hi, tech

University of Houston researchers and students are bringing multiple realities together to help improve the design process for crewed space missions.

Helmed by Vittorio Netti, a researcher for UH and a space architect, the university has launched an XR Lab within the University of Houston architecture building. The lab allows researchers to combine mixed reality (MR), virtual reality (VR), augmented reality (AR) and extended reality (XR) to "blend the physical and digital worlds" to give designers a better understanding of life in space, according to a release from UH.

In the lab researchers can wear MY space suits and goggles, take a VR space walk, or feel what it's like to float to the International Space Station with the help of XR and a crane.

The area in which the researchers conduct this work is known as the "cage" and was developed during a six-month research and design study of lunar surface architecture sponsored by Boeing, which aimed to learn more about the design of a lunar terrain vehicle and a small lunar habitat.

The work is part of UH's Sasakawa International Center of Space Architecture (SICSA), which is led by Olga Bannova, a research associate professor and director of the space architecture graduate program at UH.

She says work like this will drastically cut down research and development time when designing space structures.

“These technologies should be harnessed to mitigate the dependency on physical prototyping of assets and help optimize the design process, drastically reducing research-and-development time and providing a higher level of immersion,” Bannova said in a statement.

Today the research team is shifting its focus on designing for a Mars landing. In the future, they aim to demonstrate and test the system for habitats designed for both lunar and Martian surfaces. They are also working with Boeing to test designs in microgravity, or zero gravity, which exists inside the International Space Station.

Mixed Reality Raising the Bar for Space Architecture on the Moon and MarsStep into this 'Cage' at the University of Houston where physical and digital worlds are merged, allowing students to see and ...

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Intuitive Machines to acquire NASA-certified deep space navigation company

space deal

Houston-based space technology, infrastructure and services company Intuitive Machines has agreed to buy Tempe, Arizona-based aerospace company KinetX for an undisclosed amount.

The deal is expected to close by the end of this year, according to a release from the company.

KinetX specializes in deep space navigation, systems engineering, ground software and constellation mission design. It’s the only company certified by NASA for deep space navigation. KinetX’s navigation software has supported both of Intuitive Machines’ lunar missions.

Intuitive Machines says the acquisition marks its entry into the precision navigation and flight dynamics segment of deep space operations.

“We know our objective, becoming an indispensable infrastructure services layer for space exploration, and achieving it requires intelligent systems and exceptional talent,” Intuitive Machines CEO Steve Altemus said in the release. “Bringing KinetX in-house gives us both: flight-proven deep space navigation expertise and the proprietary software behind some of the most ambitious missions in the solar system.”

KinetX has supported deep space missions for more than 30 years, CEO Christopher Bryan said.

“Joining Intuitive Machines gives our team a broader operational canvas and shared commitment to precision, autonomy, and engineering excellence,” Bryan said in the release. “We’re excited to help shape the next generation of space infrastructure with a partner that understands the demands of real flight, and values the people and tools required to meet them.”

Intuitive Machines has been making headlines in recent weeks. The company announced July 30 that it had secured a $9.8 million Phase Two government contract for its orbital transfer vehicle. Also last month, the City of Houston agreed to add three acres of commercial space for Intuitive Machines at the Houston Spaceport at Ellington Airport. Read more here.

Japanese energy tech manufacturer moves U.S. headquarters to Houston

HQ HOU

TMEIC Corporation Americas has officially relocated its headquarters from Roanoke, Virginia, to Houston.

TMEIC Corporation Americas, a group company of Japan-based TMEIC Corporation Japan, recently inaugurated its new space in the Energy Corridor, according to a news release. The new HQ occupies the 10th floor at 1080 Eldridge Parkway, according to ConnectCRE. The company first announced the move last summer.

TMEIC Corporation Americas specializes in photovoltaic inverters and energy storage systems. It employs approximately 500 people in the Houston area, and has plans to grow its workforce in the city in the coming year as part of its overall U.S. expansion.

"We are thrilled to be part of the vibrant Greater Houston community and look forward to expanding our business in North America's energy hub," Manmeet S. Bhatia, president and CEO of TMEIC Corporation Americas, said in the release.

The TMEIC group will maintain its office in Roanoke, which will focus on advanced automation systems, large AC motors and variable frequency drive systems for the industrial sector, according to the release.

TMEIC Corporation Americas also began operations at its new 144,000-square-foot, state-of-the-art facility in Brookshire, which is dedicated to manufacturing utility-scale PV inverters, earlier this year. The company also broke ground on its 267,000-square-foot manufacturing facility—its third in the U.S. and 13th globally—this spring, also in Waller County. It's scheduled for completion in May 2026.

"With the global momentum toward decarbonization, electrification, and domestic manufacturing resurgence, we are well-positioned for continued growth," Bhatia added in the release. "Together, we will continue to drive industry and uphold our legacy as a global leader in energy and industrial solutions."

---

This article originally appeared on EnergyCapitalHTX.com.

2 Texas cities named on LinkedIn's inaugural 'Cities on the Rise'

jobs data

LinkedIn’s 2025 Cities on the Rise list includes two Texas cities in the top 25—and they aren’t Houston or Dallas.

The Austin metro area came in at No. 18 and the San Antonio metro at No. 23 on the inaugural list that measures U.S. metros where hiring is accelerating, job postings are increasing and talent migration is “reshaping local economies,” according to the company. The report was based on LinkedIn’s exclusive labor market data.

According to the report, Austin, at No. 18, is on the rise due to major corporations relocating to the area. The datacenter boom and investments from tech giants are also major draws to the city, according to LinkedIn. Technology, professional services and manufacturing were listed as the city’s top industries with Apple, Dell and the University of Texas as the top employers.

The average Austin metro income is $80,470, according to the report, with the average home listing at about $806,000.

While many write San Antonio off as a tourist attraction, LinkedIn believes the city is becoming a rising tech and manufacturing hub by drawing “Gen Z job seekers and out-of-state talent.”

USAA, U.S. Air Force and H-E-B are the area’s biggest employers with professional services, health care and government being the top hiring industries. With an average income of $59,480 and an average housing cost of $470,160, San Antonio is a more affordable option than the capital city.

The No. 1 spot went to Grand Rapids due to its growing technology scene. The top 10 metros on the list include:

  • No. 1 Grand Rapids, Michigan
  • No. 2 Boise, Idaho
  • No. 3 Harrisburg, Pennsylvania
  • No. 4 Albany, New York
  • No. 5 Milwaukee, Wisconsin
  • No. 6 Portland, Maine
  • No. 7 Myrtle Beach, South Carolina
  • No. 8 Hartford, Connecticut
  • No. 9 Nashville, Tennessee
  • No. 10 Omaha, Nebraska

See the full report here.