Houston-based Dr. Theodoros Voloyiannis was one of six involved in a remote surgery in space demonstration. Photo courtesy of Texas Oncology

A small surgical robot at the International Space Station completed its first surgery demo in zero gravity last week, and one of the surgeons tasked with the remote robotic operations on simulated tissue was Houston-based Dr. Theodoros Voloyiannis.

Voloyiannis took part in what is being referred to as “surgery in space” by being one of the six doctors remotely controlling spaceMIRA — Miniaturized In Vivo Robotic Assistant — that performed several operations on simulated tissue at the lab located in the space station. The surgeons operated remotely from earth in Lincoln, Nebraska. The remote surgeons worked to control the robot's hands to provide tension to the simulated tissue made of rubber bands. They then used the other hand to dissect the elastic tissue with scissors.

“I said during the procedure ‘it was a small rubber band cut, but a great leap for surgery,’“ Voloyiannis tells InnovationMap. “This was a huge milestone for me personally in my career.”

The robot was developed by Virtual Incision Corporation, and made possible through a partnership between NASA and the University of Nebraska. The team of surgeons took part in a demonstration that is considered a common surgical task, as they dissected the correct piece of tissue under pressure.

Latency is the time delay between when the command is sent and the robot receives it, and that was the big challenge the team faced. The delay was about 0.85 of a second according to what the colorectal surgeon who worked on spaceMIRA Dr. Michael Jobst said to CNN. The demo overall was a success according to the team, and posed a new-found adrenaline rush due to the groundbreaking innovation.

“The excitement of the new and the unknown,” Voloyiannis says on the feeling of doing the first operation of its kind. “I never thought I’d be doing something like this when I was in training and in medical school.”

Voloyiannis serves as the chairman of colon and rectal surgery for The US Oncology Network. He was chosen for this experiment due to his experience and expertise performing robotic colorectal surgery. Voloyiannis and the developers are hopeful that this type of technology will soon allow doctors to perform this specialized robotic surgery on patients living in rural areas without a specialized surgeon nearby, military battlefields, as well as regularly in space one day.

“The same concept of remote surgery regularly in space could certainly be entertained,” Voloyiannis says. “When you do things with an absence of gravity and perform a surgery in that environment — of course that changes the way we do things. When you have an absence of gravity with bodily fluids, it is a very hard surgery, but with partial gravity that idea can be entertained.

"Remotely, internet connectivity would have to be considered and you’d have someone remote like me here, while potentially there you’d have someone with less training doing the procedure there guiding the robot," he continues. "It’s quite the concept though.”

The doctors had to account for nearly a second of delay in connectivity. Photo courtesy of Texas Oncology

A mixed reality lab at the University of Houston is merging the physical and digital worlds. Photo via UH.edu

UH lab using mixed reality to optimize designs for the Moon and Mars

hi, tech

University of Houston researchers and students are bringing multiple realities together to help improve the design process for crewed space missions.

Helmed by Vittorio Netti, a researcher for UH and a space architect, the university has launched an XR Lab within the University of Houston architecture building. The lab allows researchers to combine mixed reality (MR), virtual reality (VR), augmented reality (AR) and extended reality (XR) to "blend the physical and digital worlds" to give designers a better understanding of life in space, according to a release from UH.

In the lab researchers can wear MY space suits and goggles, take a VR space walk, or feel what it's like to float to the International Space Station with the help of XR and a crane.

The area in which the researchers conduct this work is known as the "cage" and was developed during a six-month research and design study of lunar surface architecture sponsored by Boeing, which aimed to learn more about the design of a lunar terrain vehicle and a small lunar habitat.

The work is part of UH's Sasakawa International Center of Space Architecture (SICSA), which is led by Olga Bannova, a research associate professor and director of the space architecture graduate program at UH.

She says work like this will drastically cut down research and development time when designing space structures.

“These technologies should be harnessed to mitigate the dependency on physical prototyping of assets and help optimize the design process, drastically reducing research-and-development time and providing a higher level of immersion,” Bannova said in a statement.

Today the research team is shifting its focus on designing for a Mars landing. In the future, they aim to demonstrate and test the system for habitats designed for both lunar and Martian surfaces. They are also working with Boeing to test designs in microgravity, or zero gravity, which exists inside the International Space Station.

Mixed Reality Raising the Bar for Space Architecture on the Moon and MarsStep into this 'Cage' at the University of Houston where physical and digital worlds are merged, allowing students to see and ...

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

FDA greenlights Houston surgery robotics company's unique technology

headed to clinical trials

A Houston surgical robotics company has gotten a Investigational Device Exemption from the FDA to go forward with human trials.

This news allows EndoQuest Robotics to begin its Prospective Assessment of a Robotic-Assisted Device in Gastrointestinal Medicine (PARADIGM) study, which will be conducted at leading United States health care facilities, including Brigham and Women’s Hospital (Boston), Mayo Clinic (Scottsdale), Cleveland Clinic (Cleveland), AdventHealth (Orlando), and HCA Healthcare (Houston). The study will include surgeries on 50 subjects, who will hopefully begin to enroll in January.

“The foundational thesis is we're trying to make sure that the world's largest medical center is also the world's largest med tech innovation center,” Eduardo Fonseca, interim CEO of EndoQuest Robotics, tells InnovationMap.

His company is well on its way to helping to assure that, through making history of its own. EndoQuest is behind the world's first Flexible Robotic Surgical System, a technology that may one day transform surgery as we know it.

The idea to use these novel robots for surgery came from Dr. Todd Wilson, a surgeon at UTHealth Houston, who spent his medical education, residency, and fellowship at the institution.

“I had really focused in my practice on trying to do everything possible to improve outcomes for patients,” Wilson explains. “And there seemed to be a pretty good correlation that the smaller the incisions or the fewer incisions, the better patients would do.”

The stumbling block? The necessary small incisions are difficult for human surgeons to make with current technology. But UTHealth was part of the solution.

“Right there in the University of Texas was a microsurgical lab where they were focusing on trying to develop robotics, but the application was still a little bit fuzzy,” Wilson says.

Using their innovations to solve Wilson’s problem turned out to be the start of the company now known as EndoQuest Robotics.

The first indication for the system is for colon lesions. But in the future it could be used for practically any minimally invasive surgery (MIS). That means that the robots could help to perform anything from a tonsillectomy to cholecystectomy (gallbladder removal) to non-invasive colorectal procedures, should those lesions prove to be cancerous.

According to Fonseca, last year was the first on record that there were more MIS, including laparoscopic and robotic surgeries, than conventional ones in the U.S. The time is right to forge ahead with the flexible robotic surgical system. Days ago, the EndoQuest team announced that its Investigational Device Exemption (IDE) application for its pivotal colorectal clinical study was approved by the FDA.

“Our end point is a device that can be mass-manufactured and very safe for patients and has a short learning curve, so therefore, we intend to learn a lot during these trials that will inform our ultimate design,” says Fonseca.

He adds that it’s a “brilliant” group of engineers that has set EndQuest apart, including both teams in Houston and in South Korea.

“We can move twice as fast as anyone else,” jokes engineer Jiwon Choi.

Despite the extra brain power provided by the South Korea engineers, Fonseca says that EndoQuest’s beginnings are “as much of a Houston story as you could find.”

Founder bets on Houston to grow innovative corrosion detection technology

HOUSTON INNOVATORS PODCAST EPISODE 265

Despite having success in taking his technology from lab to commercialization, Anwar Sadek made the strategic decision to move his company, Corrolytics, from where it was founded in Ohio to Houston.

"Houston is the energy capital of the world. For the technology we are developing, it is the most strategic move for us to be in this ecosystem and in this city where all the energy companies are, where all the investors in the energy space are — and things are moving really fast in Houston in terms of energy transition and developing the current infrastructure," Sadek, co-founder and CEO of Corrolytics, says on the Houston Innovators Podcast.

And as big as a move as it was, it was worth it, Sadek says.

"It's been only a year that we've been here, but we've made the most developments, the most outreach to clients in this one last year."



The technology Sadek and his team have created is a tool to detect microbial corrosion — a major problem for industrial businesses, especially within the energy sector. Sadek describes the product as being similar to a testing hit a patient would use at home or in a clinic setting to decipher their current ailments.

Users of the Corrolytics test kit can input their pipeline sample in the field and receive results via Corrolytics software platform.

"This technology, most importantly, is noninvasive. It does not have to be installed into any pipelines or assets that the company currently has," Sadek explains. "To actually use it, you don't have to introduce new techniques or new processes in the current operations. It's a stand-alone, portable device."

Corrolytics approach is to help revolutionize and digitize microbial corrosion detection — both to improves efficiency and operational cost for industrial companies, but also to move the needle on a cleaner future for the energy industry.

"We are having an energy transition — that is a given. As we are bringing new energy, there will be growth of infrastructure to them. Every single path for the energy transition, corrosion will play a primary role as well," Sadek says.

Corrolytics hopes to work with new energies from the beginning to used the data they've collected to prevent corrosion in new facilities. However, the company's technology is already making an impact.

"Every year, there is about 1.2 gigaton of carbon footprint a year that is released into the environment that is associated with replacing corroded steel in general industries," Sadek says. "With Corrolytics, (industrial companies) have the ability to extend the life of their current infrastructure."

Sadek says his move to Houston has already paid off, and he cites one of the company's big wins was at the 2024 Houston Innovation Awards, where Corrolytics won two awards.

UH researchers secure $3.3M for AI-powered subsurface sensing system to revolutionize underground power lines

going under

Researchers from the University of Houston — along with a Hawaiian company — have received $3.3 million in funding to explore artificial intelligence-backed subsurface sensing system for safe and efficient underground power line installation.

Houston's power lines are above ground, but studies show underground power is more reliable. Installing underground power lines is costly and disruptive, but the U.S. Department of Energy, in an effort to find a solution, has put $34 million into its new GOPHURRS program, which stands for Grid Overhaul with Proactive, High-speed Undergrounding for Reliability, Resilience, and Security. The funding has been distributed across 12 projects in 11 states.

“Modernizing our nation’s power grid is essential to building a clean energy future that lowers energy costs for working Americans and strengthens our national security,” U.S. Secretary of Energy Jennifer M. Granholm says in a DOE press release.

UH and Hawaii-based Oceanit are behind one of the funded projects, entitled “Artificial Intelligence and Unmanned Aerial Vehicle Real-Time Advanced Look-Ahead Subsurface Sensor.”

The researchers are looking a developing a subsurface sensing system for underground power line installation, potentially using machine learning, electromagnetic resistivity well logging, and drone technology to predict and sense obstacles to installation.

Jiefu Chen, associate professor of electrical and computer engineering at UH, is a key collaborator on the project, focused on electromagnetic antennas installed on UAV and HDD drilling string. He's working with Yueqin Huang, assistant professor of information science technology, who leads the geophysical signal processing and Xuqing Wu, associate professor of computer information systems, responsible for integrating machine learning.

“Advanced subsurface sensing and characterization technologies are essential for the undergrounding of power lines,” says Chen in the release. “This initiative can enhance the grid's resilience against natural hazards such as wildfires and hurricanes.”

“If proven successful, our proposed look-ahead subsurface sensing system could significantly reduce the costs of horizontal directional drilling for installing underground utilities,” Chen continues. “Promoting HDD offers environmental advantages over traditional trenching methods and enhances the power grid’s resilience.”

------

This article originally ran on EnergyCapital.