Let's talk about dark data — what it means and how to navigate it. Graphic by Miguel Tovar/University of Houston

Is it necessary to share ALL your data? Is transparency a good thing or does it make researchers “vulnerable,” as author Nathan Schneider suggests in the Chronicle of Higher Education article, “Why Researchers Shouldn’t Share All Their Data.”

Dark Data Defined

Dark data is defined as the universe of information an organization collects, processes and stores – oftentimes for compliance reasons. Dark data never makes it to the official publication part of the project. According to the Gartner Glossary, “storing and securing data typically incurs more expense (and sometimes greater risk) than value.”

This topic is reminiscent of the file drawer effect, a phenomenon which reflects the influence of the results of a study on whether or not the study is published. Negative results can be just as important as hypotheses that are proven.

Publication bias and the need to only publish positive research that supports the PI’s hypothesis, it can be argued, is not good science. According to an article in the Indian Journal of Anaesthesia, authors Priscilla Joys Nagarajan, et al., wrote: “It is speculated that every significant result in the published world has 19 non-significant counterparts in file drawers.” That’s one definition of dark data.

Total Transparency

But what to do with all your excess information that did not make it to publication, most likely because of various constraints? Should everything, meaning every little tidbit, be readily available to the research community?

Schneider doesn’t think it should be. In his article, he writes that he hides some findings in a paper notebook or behind a password, and he keeps interviews and transcripts offline altogether to protect his sources.

Open-source

Open-source software communities tend to regard total transparency as inherently good. What are the advantages of total transparency? You may make connections between projects that you wouldn’t have otherwise. You can easily reproduce a peer’s experiment. You can even become more meticulous in your note-taking and experimental methods since you know it’s not private information. Similarly, journalists will recognize this thought pattern as the recent, popular call to engage in “open journalism.” Essentially, an author’s entire writing and editing process can be recorded, step by step.

TMI

This trend has led researchers to open-source programs like Jupyter and GitHub. Open-source programs detail every change that occurs along a project’s timeline. Is unorganized, excessive amounts of unpublishable data really what transparency means? Or does it confuse those looking for meaningful research that is meticulously curated?

The Big Idea

And what about the “vulnerability” claim? Sharing every edit and every new direction taken opens a scientist up to scoffers and harassment, even. Dark data in industry even involves publishing salaries, which can feel unfair to underrepresented, marginalized populations.

In Model View Culture, Ellen Marie Dash wrote: “Let’s give safety and consent the absolute highest priority, with openness and transparency prioritized explicitly below those. This means digging deep, properly articulating in detail what problems you are trying to solve with openness and transparency, and handling them individually or in smaller groups.”

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston shines among top 10 tech metros in the South, study says

Tops in Tech

A study analyzing top U.S. locales for the tech industry ranked Houston the No. 9 best tech hub in the South.

The report by commercial real estate platform CommercialCafe examined the top 20 Southern metros across nine metrics, such as the growth rates of tech establishments and employment, median tech earnings, a quality of life index, and more.

Like other Texas metros, the study attributes Houston's tech powerhouse status to its growing presence of major tech companies. However, Houston leads the nation with the highest number of patents granted between 2020 and 2024.

"The second-largest metro by population in the South, Houston led the region with an impressive 8,691 tech patent grants in the last five years," the report said. "Once synonymous with oil, Houston is increasingly making its mark as a cleantech hub — and patents reflect this shift."

Houston also experienced an impressive 14 percent growth in tech establishments, with nearly 500 new tech companies moving to the metro. An impressive 32 percent job growth rate also accompanied this change, with over 30,500 tech jobs added between 2019 and 2023.

Here's how Houston stacked up across the remaining five rankings:
  • No. 11 – Tech establishment density
  • No. 15 – Median tech earnings
  • No. 19 – Median tech earnings growth
  • No. 20 – Tech job density
  • No. 20 – Quality of life index

In a separate 2024 report, Houston was the No. 22 best tech city nationwide, showing that the city is certainly making efforts to improve its friendliness toward the tech industry in 2025.

Other top Texas tech hubs in the South
The only other Texas metros to earn spots in the report were Austin (No. 1) and Dallas-Fort Worth (No. 4). Most notably, CommercialCafe says Austin saw a 25 percent increase in tech company density from 2019 to 2023, which is the third-highest growth rate out of all 20 metros.

"Moreover, the metro’s tech scene thrives on a diverse range of segments, including AI and green energy (bolstered by the University of Texas), as well as globally recognized events like [South by Southwest]," the report says. "Thus, with tech companies accounting for more than half of all office leasing activity in 2024, Austin remains a magnet for innovation, talent and investment."

Dallas, on the other hand, has a far greater diversity when it comes to its tech sector and its thriving economic opportunities.

"Not to be outdone, Dallas-Fort Worth moved up from sixth to fourth in this year’s rankings, driven by a 25.9 percent growth in tech company presence — the second-highest increase among the top 20 metros," the report said. "For instance, companies like iRely (which relocated to Irving, Texas) and Diversified (now in Plano, Texas) have joined homegrown successes, such as StackPath and Bestow."

The top 10 best tech metros in the South are:

  • No. 1 – Washington, D.C.
  • No. 2 – Austin, Texas
  • No. 3 – Raleigh, North Carolina
  • No. 4 – Dallas-Fort Worth, Texas
  • No. 5 – Huntsville, Alabama
  • No. 6 – Baltimore, Maryland
  • No. 7 – Durham, North Carolina
  • No. 8 – Atlanta, Georgia
  • No. 9 – Houston, Texas
  • No. 10 – Charlotte, North Carolina
---

This story originally appeared on our sister site, CultureMap.com.

Houston startup, researchers awarded millions to develop Brain Mesh implant

brain health

Houston startup Motif Neurotech and several Rice research groups have been selected by the United Kingdom's Advanced Research + Invention Agency (ARIA) to participate in its inaugural Precision Neurotechnologies program. The program aims to develop advanced brain-interfacing technologies for cognitive and psychiatric conditions.

ARIA will invest $84.2 million over four years in projects that “explore and unlock new methods to interface with the human brain at the circuit level,” according to a news release.

Three of the four Rice labs will collaborate with Houston health tech startup Motif Neurotech to develop Brain Mesh, which is a distributed network of minimally invasive implants that can stimulate neural circuits and stream neural data in real time. The project has been awarded approximately $5.9 million.

Motif Neurotech was spun out of the Rice lab of Jacob Robinson, a professor of electrical and computer engineering and bioengineering and CEO of Motif Neurotech. It will be developed in collaboration with U.K.-based startup MintNeuro, which will help develop custom integrated circuits that will help to miniaturize the implants, according to a separate release.

Robinson will lead the system and network integration and encapsulation efforts for Mesh Points implants. According to Rice, these implants, about the size of a grain of rice, will track and modulate brain states and be embedded in the skull through relatively low-risk surgery.

The Rice lab of Valentin Dragoi, professor of electrical and computer engineering at Rice and the Rosemary and Daniel J. Harrison III Presidential Distinguished Chair in Neuroprosthetics at Houston Methodist, will conduct non-human primate experimental models for Brain Mesh. Kaiyuan Yang, associate professor of electrical and computer engineering who leads the Secure and Intelligent Micro-Systems Lab at Rice, will work on power and data pipeline development to enable the functional miniaturization of the Mesh Points.

“Current neurotechnologies are limited in scale, specificity and compatibility with human use,” Robinson said in a news release. “The Brain Mesh will be a precise, scalable system for brain-state monitoring and modulation across entire neural circuits designed explicitly for human translation. Our team brings together a key set of capabilities and the expertise to not only work through the technical and scientific challenges but also to steward this technology into clinical trials and beyond.”

The fourth Rice lab, led by assistant professor of electrical and computer engineering Jerzy Szablowski, will collaborate with researchers from three universities and two industry partners to develop closed-loop, self-regulating gene therapy for dysfunctional brain circuits. The team is backed by an award of approximately $2.3 million.

“Our goal is to develop a method for returning neural circuits involved in neuropsychiatric illnesses such as epilepsy, schizophrenia, dementia, etc. to normal function and maybe even make them more resilient,” Szablowski said in a news release.

Neurological disorders in the U.K. have a roughly $5.4 billion economic burden, and some estimates run as high as $800 billion annually in terms of economic disruptions in the U.S. These conditions are the leading cause of illness and disability with over one in three people impacted according to the World Health Organization.

Electricity startup expands to Houston with promise of backup battery power

Power Up

An Austin startup that sells electricity and couples it with backup power has entered the Houston market.

Base Power, which claims to be the first and only electricity provider to offer a backup battery, now serves the Houston-area territory served by Houston-based CenterPoint Energy. No solar equipment is required for Base Power’s backup batteries.

The company is initially serving customers in the Cy-Fair, Spring, Cinco Ranch and Mission Bend communities, and will expand to other Houston-area places in the future.

Base Power already serves customers in the Austin and Dallas-Fort Worth markets.

The company says it provides “a cost-effective alternative to generators and solar-battery systems in an increasingly unreliable power grid.”

“Houston represents one of the largest home backup markets in the world, largely due to dramatic weather events that strain the power grid,” says Base Power co-founder and CEO Zach Dell, son of tech billionaire Michael Dell. “We’re eager to provide an accessible energy service that delivers affordable, reliable power to Houston homeowners.”

After paying a $495 or $995 fee that covers installation and permitting, and a $16- or $29-per-month membership fee, Base Power customers gain access to a backup battery and competitive energy rates, the company says. The startup is waiving the $495 setup fee for the first 500 Houston-area homeowners who sign up and make a refundable deposit.

With the Base Power backup package, electricity costs 14.3 cents per kilowatt-hour, which includes Base Power’s 8.5 cents per kilowatt-hour charge and rates charged by CenterPoint. The average electric customer in Houston pays 13 cents per kilowatt-hour, according to EnergySage.

“Base Power is built to solve a problem that so many Texans face: consistent power,” says Justin Lopas, co-founder and chief operating officer of Base Power and a former SpaceX engineer. “Houstonians can now redefine how they power their homes, while also improving the existing power grid.”

Founded in 2023, Base Power has attracted funding from investors such as Thrive Capital, Valor Equity Partners, Altimeter Capital, Trust Ventures, and Terrain. Zach Dell was previously an associate on the investment team at Thrive Capital.

---

This story originally appeared on our sister site, EnergyCapitalHTX.com.