Houston researchers are hard at work in the lab to progress medical advancements at the bedside. Getty Images

Every day, important research is being completed under the roofs of Houston medical institutions. From immunotherapy to complex studies on how a memory is made, Houston researchers are discovering and analyzing important aspects of the future of medicine.

Here are three research projects currently being conducted around town.

University of Houston's potential solution to sickle cell disease

Vassiliy Lubchenko is a University of Houston associate professor of chemistry. Courtesy of UH

For the most part, sickle cells have been a mystery to scientists, but one University of Houston professor has recently reported a new finding on how sickle cells are formed — enlightening the medical community with hopes that better understanding the disease may lead to prevention.

Vassiliy Lubchenko, UH associate professor of chemistry, shared his new finding in Nature Communications. He reports that "droplets of liquid, enriched in hemoglobin, form clusters inside some red blood cells when two hemoglobin molecules form a bond — but only briefly, for one thousandth of a second or so," reads a release from UH.

In sickle cell disease, or anemia, red blood cells are crescent shaped and don't flow as easily through narrow blood vessels. The misshapen cells are caused by abnormal hemoglobin molecules that line up into stiff filaments inside red blood cells. Those filaments grow when the protein forms tiny droplets called mesoscopic.

"Though relatively small in number, the mesoscopic clusters pack a punch," says Lubchenko in the release. "They serve as essential nucleation, or growth, centers for things like sickle cell anemia fibers or protein crystals. The sickle cell fibers are the cause of a debilitating and painful disease, while making protein crystals remains to this day the most important tool for structural biologists."

Lubchenko conclusion is that the key to prevent sickle cell disease is to is to stop the formation of the initial clusters so fibers aren't able to grow out of them.

Baylor College of Medicine's immunotherapy research in breast cancer

science-Digital Composite Image Of Male Scientist Experimenting In Laboratory

Baylor College of Medicine researchers are looking into the complexities of immune cells in breast cancer. Getty Images

Baylor College of Medicine researchers are leading an initiative to figure out the potential effect of immunotherapy on different types of breast cancers. Their report is featured in Nature Cell Biology.

The scientists zoned in on two types of immune cells — neutrophils and macrophages — and they found frequency differed in a way that indicated potential roles in immunotherapy.

"Focusing on neutrophils and macrophages, we investigated whether different tumors had the same immune cell composition and whether seemingly similar immune components played the same role in tumor growth. Importantly, we wanted to find out whether differences in immune cell composition contributed to the tumors' responses to immunotherapy," says Dr. Xiang 'Shawn' Zhang, professor at the Lester and Sue Smith Breast Center and member of the Dan L Duncan Comprehensive Cancer Center at Baylor College of Medicine, in a news release.

Further exploring the discrepancies between the immune cells and the role they play in tumor growth will help better understand immunotherapy's potential in certain types of breast cancer.

"These findings are just the beginning. They highlight the need to investigate these two cellular types deeper. Under the name 'macrophages' there are many different cellular subtypes and the same stands for neutrophils," Zhang says. "We need to identify at single cell level which subtypes favor and which ones disrupt tumor growth taking also into consideration tumor heterogeneity as both are relevant to therapy."

Rice University, UTHeath, and UH's memory-making study

Researchers from all corners of Houston are diving into how memories are made. Courtesy of Rice University

When you make a memory, your brain cells structurally change. Through a multi-institutional study with researchers from UH, Rice University, and the University of Texas Health Science Center at Houston, we now know more about the way memories are made.

When forming memories, three moving parts work together in the human brain — a binding protein, a structural protein and calcium — to allow for electrical signals to enter neural cells and change the molecular structures in cognition. The scientists compared notes on how on that binding protein works.

The team's study was published in the Proceedings of the National Academy of Sciences. Peter Wolynes, a theoretical physicist at Rice, UH physicist Margaret Cheung, and UTHealth neurobiologist Neal Waxham worked together to understand the complex process memories experience in the process of being made.

"This is one of the most interesting problems in neuroscience: How do short-term chemical changes lead to something long term, like memory?" Waxham says in a release from Rice. "I think one of the most interesting contributions we make is to capture how the system takes changes that happen in milliseconds to seconds and builds something that can outlive the initial signal."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Micro-nuclear reactor to launch at Texas A&M innovation campus in 2026

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston falls from top 50 in global ranking of 'World's Best Cities'

Rankings & Reports

Houston is no longer one of the top 50 best cities in the world, according to a prestigious annual report by Canada-based real estate and tourism marketing firm Resonance Consultancy.

The newest "World's Best Cities" list dropped Houston from No. 40 last year to No. 58 for 2026.

The experts at Resonance Consultancy annually compare the world's top 100 cities with metropolitan populations of at least 1 million residents or more based on the relative qualities of livability, "lovability," and prosperity. The firm additionally collaborated with AI software company AlphaGeo to determine each city's "exposure to risk, adaptation capacity," and resilience to change.

The No. 1 best city in the world is London, with New York (No. 2), Paris (No. 3), Tokyo (No. 4), and Madrid (No. 5) rounding out the top five in 2026.

Houston at least didn't rank as poorly as it did in 2023, when the city surprisingly plummeted as the 66th best city in the world. In 2022, Houston ranked 42nd on the list.

Despite dropping 18 places, Resonance Consultancy maintains that Houston "keeps defying gravity" and is a "coveted hometown for the best and brightest on earth."

The report cited the Houston metro's ever-growing population, its relatively low median home values ($265,000 in 2024), and its expanding job market as top reasons for why the city shouldn't be overlooked.

"Chevron’s shift of its headquarters from California to Houston, backed by $100 million in renovations, crowns relocations drawn by record 2024 Port Houston throughput of more than four million containers and a projected 71,000 new jobs in 2025," the report said.

The report also draws attention to the city's diversity, spanning from the upcoming grand opening of the long-awaited Ismaili Center, to the transformation of several industrial buildings near Memorial City Mall into a mixed-use development called Greenside.

"West Houston’s Greenside will convert 35,000 square feet of warehouses into a retail, restaurant and community hub around a one-acre park by 2026, while America’s inaugural Ismaili Center remains on schedule for later this year," the report said. "The gathering place for the community and home for programs promoting understanding of Islam and the Ismaili community is another cultural jewel for the country’s most proudly diverse major city."

In Resonance Consultancy's separate list ranking "America's Best Cities," Houston fell out of the top 10 and currently ranks as the 13th best U.S. city.

Elsewhere in Texas, Austin and Dallas also saw major declines in their standings for 2026. Austin plummeted from No. 53 last year to No. 87 for 2026, and Dallas fell from No. 53 to No. 78.

"In this decade of rapid transformation, the world’s cities are confronting challenges head‑on, from climate resilience and aging infrastructure to equitable growth," the report said. "The pandemic, long forgotten but still a sage oracle, exposed foundational weaknesses – from health‑care capacity to housing affordability. Yet, true to their dynamic nature, the leading cities are not merely recovering, but setting the pace, defining new paradigms of innovation, sustainability and everyday livability."

---

This article originally appeared on CultureMap.com.

Waymo self-driving robotaxis will launch in Houston in 2026

Coming Soon

Houston just cleared a major lane to the future. Waymo has announced the official launch of its self-driving robotaxi service in the Bayou City, beginning with employee-only operations this fall ahead of a public launch in early 2026.

The full rollout will include three Texas cities, Houston, Dallas, and San Antonio, along with Miami and Orlando, Florida. Currently, the company operates in the San Francisco Bay Area, Phoenix, and Los Angeles, with service available in Austin and Atlanta through Uber.

Before letting its technology loose on a city, Waymo first tests the routes with human drivers. Once each locale is mapped, the cars can begin driving independently. Unique situations are flagged by specialists, and engineers evaluate performance in virtual replicas of each city.

“Waymo’s quickly entering a number of new cities in the U.S. and around the world, and our approach to every new city is consistent,” explained the announcement. “We compare our driving performance against a proven baseline to validate the performance of the Waymo Driver and identify any unique local characteristics.”

The launch puts Waymo ahead of Tesla. Elon Musk’s Austin-based carmaker has made a lot of hullabaloo about autonomy being the future of the company, but has yet to launch its service on a wide scale.

Waymo started testing San Antonio’s roadways in May as part of a multi-city “road trip,” which also included Houston. The company says its measured approach to launches helps alleviate local concern over safety and other issues.

“The future of transportation is accelerating, and we are driving it forward with a commitment to quality and safety,” Waymo wrote. “Our rigorous process of continuous iteration, validation, and local engagement ensures that we put communities first as we expand.”

---

This article originally appeared on CultureMap.com.