Houston-based PolyVascular has invented a polymer-based heart valve for children with congenital heart disease. Photo courtesy of TMC Innovation

A $2 million federal grant will enable Houston-based PolyVascular to launch human trials of what it hails as the first polymer-based heart valve for children.

In conjunction with the grant, Dr. Will Clifton has joined the medical device company as chief operating officer. He will oversee the grant as principal investigator, and will manage the company's operations and R&D. Clifton is president and co-founder of Houston-based Enventure, a medical innovation incubator and education hub. He previously was senior director of medical affairs at Houston-based Procyrion, a clinical-stage medical device company.

PolyVascular's Phase II grant came from the Small Business Innovation Research (SBIR) program, which promotes technological projects.

The PolyVascular heart valve will help treat congenital heart disease affecting more than 1 million around the world. PolyVascular plans to launch clinical trials of the valve in children 5 and over within two years.

"Congenital heart disease remains the most common category of birth defect and a leading cause of childhood death in the developed world," reads a March 30 news release from PolyVascular, founded in 2014.

PolyVascular says the valve can be implanted without surgery, and can avoid the use of valve replacements from humans or animals. Those valve replacements are difficult to find and often don't last too long, leading to frequent follow-up surgeries.

"Our aim at PolyVascular is to transform the care of children with congenital heart disease by developing an entirely new generation of valves made of medical-grade polymer devoid of any biological tissue," Dr. Henri Justino, chief medical officer at PolyVascular, says in a release. "The valves in use so far for children have been made of biological tissue. Unfortunately, our immune systems target and destroy this biological tissue, sometimes rapidly, rendering the valve ineffective."

The SBIR grant isn't the only win for PolyVascular in recent years.

In 2019, the startup came away with several honors in the 2019 Texas A&M New Ventures Competition. It won the pitch competition (complete with a $5,000 cash award), and received the Biotex Investment Prize, Amerra Visualization Services Prize, and GOOSE Society Investment Prize.

Also in 2019, PolyVascular, a member of TMCx's 2017 medical device cohort, won in the medical device and health disparities and equity categories at the fifth annual Impact Pediatric Health pitch competition. Additionally, the Southwest National Pediatric Device Consortium granted the company up to $25,000.

Last year, MedTech Innovator, a nonprofit accelerator in the medical technology sector, announced PolyVascular was one of 50 companies chosen to participate in the organization's flagship four-month accelerator program.

"During these uncertain and challenging times, the need for health innovations — specifically those that promise to deliver long-term value to the health care system and patients — is more critical than ever," said Paul Grand, CEO of MedTech Innovator.

Another Houston startup, Vivante Health, also was picked for the MedTech Innovator program. Vivante is a digital health company that helps people address digestive health and wellness.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston founder on shaping the future of medicine through biotechnology and resilience

Guest Column

Living with chronic disease has shaped my life in profound ways. My journey began in 5th grade when I was diagnosed with Scheuermann’s disease, a degenerative disc condition that kept me sidelined for an entire year. Later, I was diagnosed with hereditary neuropathy with liability to pressure palsies (HNPP), a condition that significantly impacts nerve recovery. These experiences didn’t just challenge me physically, they reshaped my perspective on healthcare — and ultimately set me on my path to entrepreneurship. What started as personal health struggles evolved into a mission to transform patient care through innovative biotechnology.

A defining part of living with these conditions was the diagnostic process. I underwent nerve tests that involved electrical shocks to my hands and arms — without anesthesia — to measure nerve activity. The pain was intense, and each test left me thinking: There has to be a better way. Even in those difficult moments, I found myself thinking about how to improve the tools and processes used in healthcare.

HNPP, in particular, has been a frustrating condition. For most people, sleeping on an arm might cause temporary numbness that disappears in an hour. For me, that same numbness can last six months. Even more debilitating is the loss of strength and fine motor skills. Living with this reality forced me to take an active role in understanding my health and seeking solutions, a mindset that would later shape my approach to leadership.

Growing up in Houston, I was surrounded by innovation. My grandfather, a pioneering urologist, was among the first to introduce kidney dialysis in the city in the 1950s. His dedication to advancing patient care initially inspired me to pursue medicine. Though my path eventually led me to healthcare administration and eventually biotech, his influence instilled in me a lifelong commitment to medicine and making a difference.

Houston’s thriving medical and entrepreneurial ecosystems played a critical role in my journey. The city’s culture of innovation and collaboration provided opportunities to explore solutions to unmet medical needs. When I transitioned from healthcare administration to founding biotech companies, I drew on the same resilience I had developed while managing my own health challenges.

My experience with chronic disease also shaped my leadership philosophy. Rather than accepting diagnoses passively, I took a proactive approach questioning assumptions, collaborating with experts, and seeking new solutions. These same principles now guide decision-making at FibroBiologics, where we are committed to developing groundbreaking therapies that go beyond symptom management to address the root causes of disease.

The resilience I built through my health struggles has been invaluable in navigating business challenges. While my early career in healthcare administration provided industry insights, launching and leading companies required the same determination I had relied on in my personal health journey.

I believe the future of healthcare lies in curative treatments, not just symptom management. Fibroblast cells hold the promise of engaging the body’s own healing processes — the most powerful cure for chronic diseases. Cell therapy represents both a scientific breakthrough and a significant business opportunity, one that has the potential to improve patient outcomes while reducing long-term healthcare costs.

Innovation in medicine isn’t just about technology; it’s about reimagining what’s possible. The future of healthcare is being written today. At FibroBiologics, our mission is driven by more than just financial success. We are focused on making a meaningful impact on patients’ lives, and this purpose-driven approach helps attract talent, engage stakeholders, and differentiate in the marketplace. Aligning business goals with patient needs isn’t just the right thing to do, it’s a powerful model for sustainable growth and lasting innovation in biotech.

---

Pete O’Heeron is the CEO and founder of FibroBiologics, a Houston-based regenerative medicine company.


Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.

FAA demands investigation into SpaceX's out-of-control Starship flight

Out of this world

The Federal Aviation Administration is demanding an accident investigation into the out-of-control Starship flight by SpaceX on May 27.

Tuesday's test flight from Texas lasted longer than the previous two failed demos of the world's biggest and most powerful rocket, which ended in flames over the Atlantic. The latest spacecraft made it halfway around the world to the Indian Ocean, but not before going into a spin and breaking apart.

The FAA said Friday that no injuries or public damage were reported.

The first-stage booster — recycled from an earlier flight — also burst apart while descending over the Gulf of Mexico. But that was the result of deliberately extreme testing approved by the FAA in advance.

All wreckage from both sections of the 403-foot (123-meter) rocket came down within the designated hazard zones, according to the FAA.

The FAA will oversee SpaceX's investigation, which is required before another Starship can launch.

CEO Elon Musk said he wants to pick up the pace of Starship test flights, with the ultimate goal of launching them to Mars. NASA needs Starship as the means of landing astronauts on the moon in the next few years.