Recent funding from CPRIT will help launch the new Accelerator for Cancer Medical Devices. Photo via TMC

A new business accelerator at Houston’s Texas Medical Center has received a nearly $3 million grant from the Cancer Prevention and Research Institute of Texas.

The CPRIT grant, awarded to the Texas Medical Center Foundation, will help launch the Accelerator for Cancer Medical Devices. The accelerator will support emerging innovators in developing prototypes for cancer-related medical devices and advancing them from prototype to clinical trials.

“The translation of new cancer-focused precision medical devices, often the width of a human hair, creates the opportunity to develop novel treatments for cancer patients,” the accelerator posted on the CPRIT website.

Scientist, consultant, and entrepreneur Jason Sakamoto, associate director of the TMC Center for Device Innovation, will oversee the accelerator. TMC officials say the accelerator builds on the success of TMC Innovation’s Accelerator for Cancer Therapeutics.

Each participant in the Accelerator for Cancer Medical Devices program will graduate with a device prototype, a business plan, and a “solid foundation” in preclinical and clinical strategies, TMC says. Participants will benefit from “robust support” provided by the TMC ecosystem, according to the medical center, and “will foster innovation into impactful and life-changing cancer patient solutions in Texas and beyond.”

In all, CPRIT recently awarded $27 million in grants for cancer research. That includes $18 million to attract top cancer researchers to Texas. Houston institutions received $4 million for recruitment:

  • $2 million to the University of Texas MD Anderson Cancer Center to recruit Rodrigo Romero from Memorial Sloan Kettering Cancer Center in New York City
  • $2 million to MD Anderson to recruit Eric Gardner from Weill Cornell Medicine in New York City

A $1 million grant also went to Baylor College of Medicine researcher Dr. Akiva Diamond. He is an assistant professor at the medical college and is affiliated with Baylor’s Dan L. Duncan Comprehensive Cancer Center.

The Rice Business Plan Competition is back in person this year, and these are the 42 teams that will go head to head for investments and prizes. Photo courtesy of Rice University

Rice University's student startup competition names 42 teams to compete for over $1 million in prizes

ready to pitch

The Rice Alliance for Technology and Entrepreneurship and the Jones Graduate School of Business have announced the 42 student teams that will compete in the 2022 Rice Business Plan Competition, which returns to an in-person format on the Rice University campus in April.

Of the teams competing for more than $1 million in prizes and funding in this year's competition, six hail from Texas — two teams each from Rice University, University of Texas at Austin, and Texas A&M University. The student competitors represent 31 universities — including three from European universities. The 42 teams were narrowed down from over 400 applicants and divided into five categories: energy, cleantech and sustainability; life sciences and health care solutions; consumer products and services; hard tech; and digital enterprise.

This is the first in-person RBPC since 2019, and the university is ready to bring together the entrepreneurs and a community of over 250 judges, mentors, and investors to the competition.

“As we come out on the other side of a long and challenging two years, we're feeling a sense of renewal and energy as we look to the future and finding inspiration from the next generation of entrepreneurs who are building a better world,” says Catherine Santamaria, director of the RBPC, in a news release.

“This year's competition celebrates student founders with a strong sense of determination — founders who are ready to adapt, build and grow companies that can change the future,” she continues. “We hope their participation will provide guidance and inspiration for our community.”

According to a news release, this year's RBPC Qualifier Competition, which narrowed down Rice's student teams that will compete in the official competition, saw the largest number of applicants, judges, and participants in the competition’s history. The Rice Alliance awarded a total of $5,000 in cash prizes to the top three teams from the internal qualifier: EpiFresh, Green Room and Anvil Diagnostics. From those three, Rice teams EpiFresh and Green Room received invitations to compete in the 2022 RBPC..

The full list of student teams that will be competing April 7 to 9 this year include:

  • Acorn Genetics from Northwestern University
  • Advanced Optronics from Carnegie Mellon University
  • Aethero Space from University of Missouri
  • AImirr from University of Chicago
  • AiroSolve from UCLA
  • Algeon Materials from UC San Diego
  • Anise Health from Harvard University
  • Beyond Silicon from Arizona State University
  • Bold Move Beverages from University of Texas at Austin
  • Diamante from University of Verona
  • EarthEn from Arizona State University
  • Empower Sleep from University of Pennsylvania
  • EpiFresh from Rice University
  • EpiSLS from University of Michigan
  • Green Room from Rice University
  • Horizon Health Solutions from University of Arkansas
  • Hoth Intelligence from Thomas Jefferson University
  • INIA Biosciences from Boston University
  • Invictus BCI from MIT
  • Invitris from Technical University of Munich (TUM)
  • KLAW Industries from Binghamton University
  • LIDROTEC from RWTH Aachen
  • Locus Lock from University of Texas at Austin
  • LymphaSense from Johns Hopkins University
  • Mallard Bay Outdoors from Louisiana State University
  • Mantel from MIT
  • Olera from Texas A&M University
  • OpenCell AI from Weill Cornell Medicine
  • OraFay from UCLA
  • Pareto from Stanford University
  • Photonect Interconnect Solutions from University of Rochester
  • PLAKK from McGill University
  • PneuTech from Johns Hopkins University
  • Rola from UC San Diego
  • RotorX from Georgia Tech
  • SimulatED from Carnegie Mellon University
  • SuChef from University of Pennsylvania
  • Symetric Finance from Fairfield University
  • Teale from Texas A&M University
  • Team Real Talk from University at Buffalo
  • TransCrypts from Harvard University
  • Woobie from Brigham Young University
Last year's awards had 54 student teams competing virtually, with over $1.4 million in cash and prizes awarded. Throughout RBPC's history, competitors have gone onto raise more than $3.57 billion in capital and more than 259 RBPC alumni have successfully launched their ventures. Forty RBPC startups that have had successful exits through acquisitions or trading on a public market, per the news release.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.