Should you launch an app? Or just a web page? This consultant weighs in with his advice. Photo courtesy of Slalom

One of the biggest decisions you'll have to make as an entrepreneur is whether you should host your product or service on the web, via an app, or through a webapp. In this quick guide, I'll go over a few tips to help you narrow down the options and make an informed decision.

First, allow me to explain each of these terms. In this context, I am assuming your big idea is either a product or service which your customer base will consume in a digital format. The question is, do you deliver your product or service via a regular webpage (web), does it require robust native application functionality (app), or can it be a hybrid model where the app runs on browser (webapp).

Certainly, if you can sell your product or services through a simple online store, then the debate is over: you should just web. If you are just selling a new gadget, for example, you don't need an app nor a webapp. E-Commerce has come such a long way that a simple webpage will suffice.

However, if that is not your situation, then here's three main considerations to help you decide between building an app or a webapp.

Native hardware required

If your product or service will use a hardware component from your audience's mobile device or tablet, such as the GPS, the Camera, the Microphone, or the Gyroscope, then you should heavily lean towards building a native app.

There are web frameworks that will allow you to gain access to a devices' camera or GPS via a webapp, but none are as stable, reliable, or robust as using a native app framework.

The question then becomes, what operating system do you develop your native app in: Apple's iOS, Google's Android, Microsoft's Windows, other or all of them?

Keep in mind there are platforms – such as Xamarin – that enable you to develop in multiple native app ecosystems simultaneously, however, deciding the platform(s) will affect your timeline, budget and audience reach. Also know that if your product or service can or should be accessible offline, then that reinforces your native app decision and eliminates a webapp given they require connectivity to run on a browser.

Universal adoption expected

In contrast, if you are looking to sign-up a broad audience then you should lean towards building a webapp.

All devices, whether mobile, tablets or laptops, have sophisticated and modern web browsers that can easily run webapps. Therefore, if you don't want to worry about deciding between different platforms, then by building a universal webapp that is compatible with all popular browsers all your users will have immediate access.

This route also bypasses all the requirements you must meet and the policies you must comply with to publish your native app to communities such as Apple's App Store or Google Play.

Even better you can update and maintain your webapp at your own pace, not having to rely on Apple's or Google's approval and publish/update schedules.

Investment tolerance 

Now, if you gathered major seed funding or hit it big in a series A round giving you a higher upfront investment tolerance, then I'd advise you to go the native app route.

The aforementioned Apple and Google native app marketplaces, albeit strict, offer amazing features that you would not be able to leverage going the webapp route. Your customer experience will almost certainly be higher going native app, which will increase your ROI, promote repeat subscribers and overall success.

But this route will be more expensive than webapp, especially if you do decide to offer it on multiple major platforms. Hence, if you have the budget, go for it and launch natively. If your investment tolerance is more reserved, then start with a webapp, and simply iterate until you are forced to go native.

Table Description automatically generated

This quick guide is by no means an exhaustive list of considerations. Product development has a million intricacies that will dictate – and sometimes demand – a specific route to market. Yet, if you ask yourself a few of the questions I laid out, you will be able to make an informed decision guiding your commercialization strategy as you kick off your startup journey.

------

Alfredo Arvide is a senior principal within product engineering at Slalom Consulting in Houston, where he helps clients tackle their most complex business challenges by applying innovative technology solutions.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”