A team out of the engineering school at Rice University has created a technology for real-time wastewater monitoring. Photo via rice.edu

A team of researchers from Rice University have received a $2 million grant to develop a unique technology that speeds up the analysis of wastewater for viruses from hours to seconds.

The team is based out of Rice’s George R. Brown School of Engineering and led by Rafael Verduzco, associate chair and a professor of chemical and biomolecular engineering and of materials science and nanoengineering. The four-year grant from the National Science Foundation will support the development of the technology, which includes wastewater-testing bioelectric sensors that deliver immediate notice of presence of viruses like SARS-CoV-2, which causes COVID-19, according to a news release from Rice.

The research project — with its partners at the Houston Health Department — have already developed water testing procedures and have analyzed samples from locations around the city. The current process includes taking samples and transferring them to Rice for analysis, but the new technology would be able to monitor systems onsite and instantly. The parties involved with this work are also collaborating with the Centers for Disease Control and Prevention Center of Excellence for wastewater epidemiology that was announced in August.

“Monitoring wastewater for COVID has been pretty effective as a way to get an idea of where we are as a population,” says Verduzco in the release. “But the way it’s done is you have to sample it, you have to do a PCR test and there’s a delay. Our selling point was to get real-time, continuous monitoring to see just how much of this virus is in the wastewater.”

The grant's co-principal investigators include Jonathan Silberg, the Stewart Memorial Professor of BioSciences and director of the Systems, Synthetic and Physical Biology Ph.D. program, and Caroline Ajo-Franklin, a professor of biosciences. Co-investigators also include Lauren Stadler, an assistant professor of civil and environmental engineering, and Kirstin Matthews, a fellow at the Baker Institute for Public Policy.

“These are engineered microbes we’re putting into wastewater, and even though they’re encapsulated, we want to know if there are concerns from health authorities and the general population,” Verduzco said. “Kirstin’s role is to look at the policy side, and also gauge public reaction and educate people about what it means when we talk about engineered bacteria.”

Rafael Verduzco is leading the research and development. Photo by Jeff Fitlow/Rice University

For over a year now, scientists have been testing wastewater for COVID-19. Now, the public can access that information. Photo via Getty Images

City launches public dashboard for tracking COVID-19 in Houston's wastewater

data points

In 2020, a group of researchers began testing Houston's wastewater to collect data to help identify trends at the community level. Now, the team's work has been rounded up to use as an online resource.

The Houston Health Department and Rice University launched the dashboard on September 22. The information comes from samples collected from the city's 39 wastewater treatment plants and many HISD schools.

"This new dashboard is another tool Houstonians can use to gauge the situation and make informed decisions to protect their families," says Dr. Loren Hopkins, chief environmental science officer for the health department and professor in the practice of statistics at Rice University, in a news release. "A high level of virus in your neighborhood's wastewater means virus is spreading locally and you should be even more stringent about masking up when visiting public places."

The health department, Houston Water, Rice University, and Baylor College of Medicine originally collaborated on the wastewater testing. Baylor microbiologist Dr. Anthony Maresso, director of BCM TAILOR Labs, led a part of the research.

"This is not Houston's first infectious disease crisis," Maresso says in an earlier news release. "Wastewater sampling was pioneered by Joseph Melnick, the first chair of Baylor's Department of Molecular Virology and Microbiology, to get ahead of polio outbreaks in Houston in the 1960s. This work essentially ushered in the field of environmental virology, and it began here at Baylor. TAILOR Labs is just continuing that tradition by providing advanced science measures to support local public health intervention."

It's an affordable way to track the virus, says experts. People with COVID-19 shed viral particles in their feces, according to the release, and by testing the wastewater, the health department can measure important infection rate changes.

The dashboard, which is accessible online now, is color-coded by the level of viral load in wastewater samples, as well as labeled with any recent trend changes. Houstonians can find the interactive COVID-19 wastewater monitoring dashboard, vaccination sites, testing sites, and more information at houstonemergency.org/covid19.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston space tech startups share latest updates on lunar missions and more

space update

Houston-based space tech companies Axiom Space and Intuitive Machines recently shared updates on innovative projects and missions, each set to launch by 2027.

Axiom Space

Axiom Space, developer of the world’s first commercial space station and other space infrastructure, is gearing up to launch two orbital data center nodes to low-earth orbit by the end of 2025.

The Axiom Space nodes will lay the foundation for space-based cloud computing. Axiom says orbital data centers provide cloud-enabled data storage and processing, artificial intelligence, and machine learning directly to satellites, constellations, and other spacecraft in Earth’s orbit. This innovation will reduce reliance on earth-based systems, enhance wireless mesh networks and improve real-time operation of space-borne assets, according to Axiom.

Axiom has been working on the development of orbital data centers since 2022. The two nodes going into space in 2025 will be part of Kepler Communications’ 10-satellite data relay network, which is scheduled to launch by the end of this year. Axiom Space and Kepler Communications have been collaborating since 2023.

Kam Ghaffarian, co-founder, executive chairman, and CEO of Axiom, says his company already has deals in place with buyers of space-based cloud computing services. Orbital data centers “are integral to Axiom Space’s vision of era-defining space infrastructure, unlocking transformational capabilities and economic growth,” he says.

Axiom Space says it will be able to buy additional payloads on Kepler’s network to boost capacity for orbital data centers. The two companies will team up to provide network and orbital data center services to various customers.

Intuitive Machines

Meanwhile, Intuitive Machines, a space exploration, infrastructure and services company, has picked SpaceX’s Falcon 9 rocket to launch its fourth delivery mission to the moon. The launch will include two lunar data relay satellites for NASA.

Intuitive Machines says its fourth lunar delivery mission is scheduled for 2027. The mission will comprise six NASA commercial lunar payloads, including a European Space Agency drill set designed to search for water at the moon’s south pole.

“Lunar surface delivery and data relay satellites are central to our strategy to commercialize the moon,” Intuitive Machines CEO Steve Altemus says.

The first of five lunar data relay satellites will be included in the company’s third delivery mission to the moon. The fourth mission, featuring two more satellites, will be followed by two other satellite-delivery missions.

Houston doctor aims to revolutionize hearing aid industry with tiny implant

small but mighty

“What is the future of hearing aids?” That’s the question that led to a potential revolution.

“The current hearing aid market and technology is old, and there are little incremental improvements, but really no significant, radical new ideas, and I like to challenge the status quo,” says Dr. Ron Moses, an ENT specialist and surgeon at Houston Methodist.

Moses is the creator of NanoEar, which he calls “the world’s smallest hearing aid.” NanoEar is an implantable device that combines the invisibility of a micro-sized tympanostomy tube with more power—and a superior hearing experience—than the best behind-the-ear hearing aid.

“You put the NanoEar inside of the eardrum in an in-office procedure that takes literally five minutes,” Moses says.

As Moses explains, because of how the human cochlea is formed, its nerves break down over time. It’s simply an inevitability that if we live long enough, we will need hearing aids.

“The question is, ‘Are we going to all be satisfied with what exists?’” he asks.

Moses says that currently, only about 20 percent of patients who need hearing aids have them. That’s because of the combination of the stigma, the expense, and the hassle and discomfort associated with the hearing aids currently available on the market. That leaves 80 percent untapped among a population of 466 million people with hearing impairment, and more to come as our population ages. In a nearly $7 billion global market, that additional 80 percent could mean big money.

Moses initially patented a version of the invention in 2000, but says that it took finding the right team to incorporate as NanoEar. That took place in 2016, when he joined forces with cofounders Michael Moore and Willem Vermaat, now the company’s president and CFO, respectively. Moore is a mechanical engineer, while Vermaat is a “financial guru;” both are repeat entrepreneurs in the biotech space.

Today, NanoEar has nine active patents. The company’s technical advisors include “the genius behind developing the brains in this device,” Chris Salthouse; NASA battery engineer Will West; Dutch physicist and audiologist Joris Dirckx; and Daniel Spitz, a third-generation master watchmaker and the original guitarist for the famed metal band Anthrax.

The NanoEar concept has done proof-of-concept testing on both cadavers at the University of Antwerp and on chinchillas, which are excellent models for human hearing, at Tulane University. As part of the TMC Innovation Institute program in 2017, the NanoEar team met with FDA advisors, who told them that they might be eligible for an expedited pathway to approval.

Thus far, NanoEar has raised about $900,000 to get its nine patents and perform its proof-of-concept experiments. The next step is to build the prototype, but completing it will take $2.75 million of seed funding.

Despite the potential for making global change, Moses has said it’s been challenging to raise funds for his innovation.

“We're hoping to find that group of people or person who may want to hear their children or grandchildren better. They may want to join with others and bring a team of investors to offset that risk, to move this forward, because we already have a world-class team ready to go,” he says.

To that end, NanoEar has partnered with Austin-based Capital Factory to help with their raise. “I have reached out to their entire network and am getting a lot of interest, a lot of interest,” says Moses. “But in the end, of course, we need the money.”

It will likely, quite literally, be a sound investment in the future of how we all hear the next generation.