A team out of the engineering school at Rice University has created a technology for real-time wastewater monitoring. Photo via rice.edu

A team of researchers from Rice University have received a $2 million grant to develop a unique technology that speeds up the analysis of wastewater for viruses from hours to seconds.

The team is based out of Rice’s George R. Brown School of Engineering and led by Rafael Verduzco, associate chair and a professor of chemical and biomolecular engineering and of materials science and nanoengineering. The four-year grant from the National Science Foundation will support the development of the technology, which includes wastewater-testing bioelectric sensors that deliver immediate notice of presence of viruses like SARS-CoV-2, which causes COVID-19, according to a news release from Rice.

The research project — with its partners at the Houston Health Department — have already developed water testing procedures and have analyzed samples from locations around the city. The current process includes taking samples and transferring them to Rice for analysis, but the new technology would be able to monitor systems onsite and instantly. The parties involved with this work are also collaborating with the Centers for Disease Control and Prevention Center of Excellence for wastewater epidemiology that was announced in August.

“Monitoring wastewater for COVID has been pretty effective as a way to get an idea of where we are as a population,” says Verduzco in the release. “But the way it’s done is you have to sample it, you have to do a PCR test and there’s a delay. Our selling point was to get real-time, continuous monitoring to see just how much of this virus is in the wastewater.”

The grant's co-principal investigators include Jonathan Silberg, the Stewart Memorial Professor of BioSciences and director of the Systems, Synthetic and Physical Biology Ph.D. program, and Caroline Ajo-Franklin, a professor of biosciences. Co-investigators also include Lauren Stadler, an assistant professor of civil and environmental engineering, and Kirstin Matthews, a fellow at the Baker Institute for Public Policy.

“These are engineered microbes we’re putting into wastewater, and even though they’re encapsulated, we want to know if there are concerns from health authorities and the general population,” Verduzco said. “Kirstin’s role is to look at the policy side, and also gauge public reaction and educate people about what it means when we talk about engineered bacteria.”

Rafael Verduzco is leading the research and development. Photo by Jeff Fitlow/Rice University

For over a year now, scientists have been testing wastewater for COVID-19. Now, the public can access that information. Photo via Getty Images

City launches public dashboard for tracking COVID-19 in Houston's wastewater

data points

In 2020, a group of researchers began testing Houston's wastewater to collect data to help identify trends at the community level. Now, the team's work has been rounded up to use as an online resource.

The Houston Health Department and Rice University launched the dashboard on September 22. The information comes from samples collected from the city's 39 wastewater treatment plants and many HISD schools.

"This new dashboard is another tool Houstonians can use to gauge the situation and make informed decisions to protect their families," says Dr. Loren Hopkins, chief environmental science officer for the health department and professor in the practice of statistics at Rice University, in a news release. "A high level of virus in your neighborhood's wastewater means virus is spreading locally and you should be even more stringent about masking up when visiting public places."

The health department, Houston Water, Rice University, and Baylor College of Medicine originally collaborated on the wastewater testing. Baylor microbiologist Dr. Anthony Maresso, director of BCM TAILOR Labs, led a part of the research.

"This is not Houston's first infectious disease crisis," Maresso says in an earlier news release. "Wastewater sampling was pioneered by Joseph Melnick, the first chair of Baylor's Department of Molecular Virology and Microbiology, to get ahead of polio outbreaks in Houston in the 1960s. This work essentially ushered in the field of environmental virology, and it began here at Baylor. TAILOR Labs is just continuing that tradition by providing advanced science measures to support local public health intervention."

It's an affordable way to track the virus, says experts. People with COVID-19 shed viral particles in their feces, according to the release, and by testing the wastewater, the health department can measure important infection rate changes.

The dashboard, which is accessible online now, is color-coded by the level of viral load in wastewater samples, as well as labeled with any recent trend changes. Houstonians can find the interactive COVID-19 wastewater monitoring dashboard, vaccination sites, testing sites, and more information at houstonemergency.org/covid19.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC names inaugural cohort for unique accelerator with UK

coming to HOU

Sixteen digital health and medical device startups founded in the United Kingdom have been selected for a customized accelerator at the Texas Medical Center's Innovation Factory.

In partnership with Innovate UK, TMCi created the Innovate UK Global Incubator Programme, a new accelerator that supports UK businesses as they build their United States go-to-market plan. The program builds the BioBridge relationship between TMC and the UK that was originally established five years ago.

“The TMC UK BioBridge program was launched with the UK Department for Business and Trade in 2018 to serve as a gateway for advancing life sciences and foster innovation and research between our two countries," says Ashley McPhail, chief external affairs and administration officer for TMC, in a news release. "We saw an opportunity to work with Innovate UK to develop a larger program with the UK after the success of the 11 companies that previously participated in our health tech accelerator."

The 16 companies will participate in the program from June to November. The cohort is expected to arrive in Houston on June 5 and have access to TMCi's facilities, network of mentors and potential clients, funding, potential customers, and curated programing — all while being a unique entry point into the US. The new offering joins three other globally recognized curriculums: Biodesign, Accelerator for Cancer Therapeutics, and Health Tech.

“TMCi nurtures long-term growth, development, and competitiveness to increase startups chances of success and global expansion," says Emily Reiser, associate director of TMC Innovation. "By bringing their novel technologies and exposing them to a curated selection of TMC’s expert network, startups receive support and evaluation to build, scale, and expand in the US market."

Two of the cohort's specialties include cardiovascular and oncology — two of TMC's strongest areas of expertise — with solutions ranging from surgical devices to AI-enabled risk stratification and hospital efficiency.

Innovate UK is the country's national innovation agency dedicated to supporting business-led innovation in all sectors.

“The United Kingdom is fully committed to improving global healthcare through scientific collaboration," says His Majesty’s Consul General in Texas Richard Hyde in the release. "Through the expansion of the TMC UK BioBridge and in partnership with Innovate UK, this programme will help to expose the brightest and best British companies to the world’s largest medical city. Our companies will collaborate and grow as they work to develop cutting edge technology. The partnership between the UK Government and TMC demonstrates that international collaboration can drive both economic growth and improvement to quality of life.”

The 16 companies making up the inaugural cohort are as follows, according to TMC.

  • AINOSTICS aims to revolutionize the treatment and prevention of neurological conditions, such as dementia, by developing innovative AI-enabled solutions that draw novel insights from routinely acquired non-invasive medical scans to deliver accurate diagnosis and outcome prediction, and in turn facilitate personalized care and timely access to disease-modifying treatments for patients.
  • Alvie is a blended human plus AI-enabled digital solution providing personalised pre and rehabilitation coaching and supportive care for cancer and surgery. Alvie's technology combines data profiling, risk-stratification and tailored prescriptions of health and well-being with curated educational content, targeted behaviour change coaching and expert support through chat messaging and virtual consultations.
  • C the Signs™ is a validated AI cancer prediction platform, which can identify patients at risk of cancer at the earliest and most curable stage of the disease. Used by healthcare professionals, C the Signs can identify which tumor type a patient is at risk of and recommend the most appropriate next step in less than 30 seconds. The platform has detected over 10,000 patients with cancer, with over 50 different types of cancer diagnosed, and with a sensitivity of >98% for cancer.
  • At PEP Health, We believe all patients deserve the best care possible. Our cutting-edge machine-learning technology enables healthcare organisations, regulators, and insurers the real-time, actionable insights they need to have a direct and dramatic impact on patient experiences.
  • PreciousMD improves the lives of lung-cancer and other lung-related illnesses patients worldwide by enabling imaging-based diagnostics needed for personalized treatment pathways.
  • Ufonia is an autonomous telemedicine company, we use large language models and voice AI to increase the capacity of clinical professionals.
  • My mhealth offers digital therapeutics for a range of long-term conditions- COPD, Asthma, Diabetes and Heart Disease. Our product has been successfully deployed in the UK and India, with >100,000 users registered to date. Our solutions empower patients to self-manage their conditions, resulting in dramatic improvements in outcomes, as evidenced through multiple clinical trials and real-world evaluations.
  • At Surgery Hero, we offer a clinically backed solution that ensures whole-human support before and after surgery. We help health systems, employers and health plans cut costs without sacrificing quality of care.
  • Panakeia's software platform enables extremely rapid multi-omics profiling in minutes directly from routinely used tissue images without needing wet lab assays.
  • QV Bioelectronics are striving to deliver longer, better quality lives for brain tumour patients. Using their first-of-its-kind implantable electric field therapy device, GRACE, QV will provide effective, focal & continuous treatment without impacting patient quality of life.
  • 52 North is a med-tech company focused on improving health outcomes and health equity by reinventing care pathways. The NeutroCheck® solution is a finger-prick blood test and digital platform built to significantly improve safety and quality of life for cancer patients, by helping to identify at-home those patients who are at risk of the most fatal side-effect of chemotherapy: neutropenic sepsis.
  • Somnus is fulfilling an unmet need in global healthcare by developing real-time, point of care blood propofol monitoring. Its products will improve the care of sedated and anaesthetised patients, save money for hospitals, and facilitate a major reduction in greenhouse gas emissions.
  • ScubaTx is a breakthrough organ transplant preservation company established to solve the global unmet need for cost-efficient and longer-duration organ preservation technology. ScubaTx has developed a simple, small and affordable device which uses Persufflation to extend the preservation of organs.
  • IBEX is on a mission to help people live active, healthy and productive lives by increasing their access to early diagnosis of osteoporosis. The IBEX BH software as medical device delvers routine, automated assessment of fracture risk from routine radiology for earlier detection and more equitable treatment of osteoporosis.
  • NuVision produces products derived from donated human amniotic membrane that are used in ophthalmology to help patients with chronic, traumatic and post-surgical wounds of the eye to be treated earlier and recover more fully and more quickly. The company’s products are also used in the management of dry eye disease, a debilitating conditions that affects around 17m people in the USA.
  • Calon Cardio-Technology is on a mission to improve quality of life for patients with Left Ventricular Assist devices (LVAD) and reduce the common post operative complications associated with these implantable heart pumps. We plan to do this by introducing a completely wireless heart pump system and augment patient follow-up with built-in remote monitoring capabilities.

UH lab using mixed reality to optimize designs for the Moon and Mars

hi, tech

University of Houston researchers and students are bringing multiple realities together to help improve the design process for crewed space missions.

Helmed by Vittorio Netti, a researcher for UH and a space architect, the university has launched an XR Lab within the University of Houston architecture building. The lab allows researchers to combine mixed reality (MR), virtual reality (VR), augmented reality (AR) and extended reality (XR) to "blend the physical and digital worlds" to give designers a better understanding of life in space, according to a release from UH.

In the lab researchers can wear MY space suits and goggles, take a VR space walk, or feel what it's like to float to the International Space Station with the help of XR and a crane.

The area in which the researchers conduct this work is known as the "cage" and was developed during a six-month research and design study of lunar surface architecture sponsored by Boeing, which aimed to learn more about the design of a lunar terrain vehicle and a small lunar habitat.

The work is part of UH's Sasakawa International Center of Space Architecture (SICSA), which is led by Olga Bannova, a research associate professor and director of the space architecture graduate program at UH.

She says work like this will drastically cut down research and development time when designing space structures.

“These technologies should be harnessed to mitigate the dependency on physical prototyping of assets and help optimize the design process, drastically reducing research-and-development time and providing a higher level of immersion,” Bannova said in a statement.

Today the research team is shifting its focus on designing for a Mars landing. In the future, they aim to demonstrate and test the system for habitats designed for both lunar and Martian surfaces. They are also working with Boeing to test designs in microgravity, or zero gravity, which exists inside the International Space Station.

Mixed Reality Raising the Bar for Space Architecture on the Moon and MarsStep into this 'Cage' at the University of Houston where physical and digital worlds are merged, allowing students to see and ...