A team out of the engineering school at Rice University has created a technology for real-time wastewater monitoring. Photo via rice.edu

A team of researchers from Rice University have received a $2 million grant to develop a unique technology that speeds up the analysis of wastewater for viruses from hours to seconds.

The team is based out of Rice’s George R. Brown School of Engineering and led by Rafael Verduzco, associate chair and a professor of chemical and biomolecular engineering and of materials science and nanoengineering. The four-year grant from the National Science Foundation will support the development of the technology, which includes wastewater-testing bioelectric sensors that deliver immediate notice of presence of viruses like SARS-CoV-2, which causes COVID-19, according to a news release from Rice.

The research project — with its partners at the Houston Health Department — have already developed water testing procedures and have analyzed samples from locations around the city. The current process includes taking samples and transferring them to Rice for analysis, but the new technology would be able to monitor systems onsite and instantly. The parties involved with this work are also collaborating with the Centers for Disease Control and Prevention Center of Excellence for wastewater epidemiology that was announced in August.

“Monitoring wastewater for COVID has been pretty effective as a way to get an idea of where we are as a population,” says Verduzco in the release. “But the way it’s done is you have to sample it, you have to do a PCR test and there’s a delay. Our selling point was to get real-time, continuous monitoring to see just how much of this virus is in the wastewater.”

The grant's co-principal investigators include Jonathan Silberg, the Stewart Memorial Professor of BioSciences and director of the Systems, Synthetic and Physical Biology Ph.D. program, and Caroline Ajo-Franklin, a professor of biosciences. Co-investigators also include Lauren Stadler, an assistant professor of civil and environmental engineering, and Kirstin Matthews, a fellow at the Baker Institute for Public Policy.

“These are engineered microbes we’re putting into wastewater, and even though they’re encapsulated, we want to know if there are concerns from health authorities and the general population,” Verduzco said. “Kirstin’s role is to look at the policy side, and also gauge public reaction and educate people about what it means when we talk about engineered bacteria.”

Rafael Verduzco is leading the research and development. Photo by Jeff Fitlow/Rice University

For over a year now, scientists have been testing wastewater for COVID-19. Now, the public can access that information. Photo via Getty Images

City launches public dashboard for tracking COVID-19 in Houston's wastewater

data points

In 2020, a group of researchers began testing Houston's wastewater to collect data to help identify trends at the community level. Now, the team's work has been rounded up to use as an online resource.

The Houston Health Department and Rice University launched the dashboard on September 22. The information comes from samples collected from the city's 39 wastewater treatment plants and many HISD schools.

"This new dashboard is another tool Houstonians can use to gauge the situation and make informed decisions to protect their families," says Dr. Loren Hopkins, chief environmental science officer for the health department and professor in the practice of statistics at Rice University, in a news release. "A high level of virus in your neighborhood's wastewater means virus is spreading locally and you should be even more stringent about masking up when visiting public places."

The health department, Houston Water, Rice University, and Baylor College of Medicine originally collaborated on the wastewater testing. Baylor microbiologist Dr. Anthony Maresso, director of BCM TAILOR Labs, led a part of the research.

"This is not Houston's first infectious disease crisis," Maresso says in an earlier news release. "Wastewater sampling was pioneered by Joseph Melnick, the first chair of Baylor's Department of Molecular Virology and Microbiology, to get ahead of polio outbreaks in Houston in the 1960s. This work essentially ushered in the field of environmental virology, and it began here at Baylor. TAILOR Labs is just continuing that tradition by providing advanced science measures to support local public health intervention."

It's an affordable way to track the virus, says experts. People with COVID-19 shed viral particles in their feces, according to the release, and by testing the wastewater, the health department can measure important infection rate changes.

The dashboard, which is accessible online now, is color-coded by the level of viral load in wastewater samples, as well as labeled with any recent trend changes. Houstonians can find the interactive COVID-19 wastewater monitoring dashboard, vaccination sites, testing sites, and more information at houstonemergency.org/covid19.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.