It's possible to predict some violent public protests by tracking social media posts on moral outrage over a triggering event. Tracy Le Blanc/Pexels

Every grade school teacher knows that student conduct can get out of hand, fast, when a group of kids eggs on one individual. Time-outs are a testimony to the power of isolating one 10-year-old from a choir of buddies.

Social media plays a role similar to a gang of hyped-up grade schoolers, providing a community that can express collective disapproval of people or events. When this disapproval has a moral cast ⁠— for example, after a police shooting or the removal of a statue ⁠— the social network's particular characteristics are key predictors about whether that disapproval will turn violent.

There is a word for the way group support of a belief system makes it seem worth fighting for: moralization. Tracking social network activity now makes it possible to measure the chances for an individual belief to become moralized by a group ⁠— a phenomenon known as moral convergence.

In a recent study in Nature, Rice Business professor Marlon Mooijman, then at the Kellogg School of Management, joined a team that analyzed when and how violence erupts in protests. In a series of observation and behavior experiments that mixed psychology, organizational theory and computer science, they accurately predicted how violence is influenced by group discussion of moral views on social media.

The researchers started by studying the number and content of tweets linked to the Baltimore riots in 2015, after the death of Freddie Gray in police custody. The researchers then compared these tweets with the number of arrests in a given time frame, using a methodology developed by Marlon Mooijman and Joe Hoover from the Brain and Creativity Institute at the University of Southern California.

To analyze the tweets responding to Gray's death, they first separated them into two sets: Those with moral commentary and those without moral judgments.

Next, the researchers tracked whether tweets with moral content increased on days with violent protests. Violence was measured using the number of police arrests, which the researchers compared with the specific time frames of moral tweets.

There was no major difference in the overall tweet traffic discussing Freddie Gray's death on days with violent protests and on peaceful days. The number of moralizing tweets, however, clearly correlated with episodes of violent protests, rising to nearly double the moralizing tweets on days with no violence.

This raised a provocative question. Were morally ⁠— based tweets a response to the events of the day ⁠— or were they somehow driving the violence?

To find out, Mooijman and Hoover worked with computer scientists Ying Lin and Jeng Ji of Rensselaer Polytechnic Institute and Morteza Dehghani of the University of Southern California to develop algorithms that could establish mathematical probabilities for the results.

For every single-unit increase in moral tweets over a 4-hour period, the researchers found, there was a .25 corresponding increase in arrests.

The researchers then tried to measure the effect similar moral views ⁠— such as a social media page with self-selected members of a similar political affiliation ⁠— had on violence during protests.

To do so, they set up a second study, which measured participant reactions to the protestors of a far-right rally in Charlottesville, Virginia in 2017. Participants ranked their level of agreement over the morality of protesting the rally.

There was a direct relationship between believing a protest action was moral, the researchers found, and finding violence at that protest acceptable. This relationship held true throughout the study, regardless of political orientation.

The researchers' next goal was to identify the impact of exposure to people of like beliefs. To do this, participants rated their feelings when they were told that most people in the U.S. shared their views. While the intensity of participants' moral views created the potential for violence, the researchers found, violence resulted when only actively validated by others with similar views.

Having one's moral outrage supported by others on social media, the professors concluded, may explain the spike in violence in recent protests.

While respect for privacy remains critical, governments and law enforcement can use the social media trend to pinpoint the moments when moral outrage can turn deadly. Perhaps most importantly, however, the research also suggests practical tactics for calming violent tendencies before they get out of control. To reduce real-life protest violence, they wrote, it's critical that social media sites include a variety of voices. It's another reason, if any were needed, that a bit of judicious exposure to other views is healthy for everyone.

------

This story originally ran on Rice Business Wisdom.

Marlon Mooijman is an assistant professor of Organizational Behavior. He teaches in the undergraduate business minor program and MBA full-time program.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.