It's possible to predict some violent public protests by tracking social media posts on moral outrage over a triggering event. Tracy Le Blanc/Pexels

Every grade school teacher knows that student conduct can get out of hand, fast, when a group of kids eggs on one individual. Time-outs are a testimony to the power of isolating one 10-year-old from a choir of buddies.

Social media plays a role similar to a gang of hyped-up grade schoolers, providing a community that can express collective disapproval of people or events. When this disapproval has a moral cast ⁠— for example, after a police shooting or the removal of a statue ⁠— the social network's particular characteristics are key predictors about whether that disapproval will turn violent.

There is a word for the way group support of a belief system makes it seem worth fighting for: moralization. Tracking social network activity now makes it possible to measure the chances for an individual belief to become moralized by a group ⁠— a phenomenon known as moral convergence.

In a recent study in Nature, Rice Business professor Marlon Mooijman, then at the Kellogg School of Management, joined a team that analyzed when and how violence erupts in protests. In a series of observation and behavior experiments that mixed psychology, organizational theory and computer science, they accurately predicted how violence is influenced by group discussion of moral views on social media.

The researchers started by studying the number and content of tweets linked to the Baltimore riots in 2015, after the death of Freddie Gray in police custody. The researchers then compared these tweets with the number of arrests in a given time frame, using a methodology developed by Marlon Mooijman and Joe Hoover from the Brain and Creativity Institute at the University of Southern California.

To analyze the tweets responding to Gray's death, they first separated them into two sets: Those with moral commentary and those without moral judgments.

Next, the researchers tracked whether tweets with moral content increased on days with violent protests. Violence was measured using the number of police arrests, which the researchers compared with the specific time frames of moral tweets.

There was no major difference in the overall tweet traffic discussing Freddie Gray's death on days with violent protests and on peaceful days. The number of moralizing tweets, however, clearly correlated with episodes of violent protests, rising to nearly double the moralizing tweets on days with no violence.

This raised a provocative question. Were morally ⁠— based tweets a response to the events of the day ⁠— or were they somehow driving the violence?

To find out, Mooijman and Hoover worked with computer scientists Ying Lin and Jeng Ji of Rensselaer Polytechnic Institute and Morteza Dehghani of the University of Southern California to develop algorithms that could establish mathematical probabilities for the results.

For every single-unit increase in moral tweets over a 4-hour period, the researchers found, there was a .25 corresponding increase in arrests.

The researchers then tried to measure the effect similar moral views ⁠— such as a social media page with self-selected members of a similar political affiliation ⁠— had on violence during protests.

To do so, they set up a second study, which measured participant reactions to the protestors of a far-right rally in Charlottesville, Virginia in 2017. Participants ranked their level of agreement over the morality of protesting the rally.

There was a direct relationship between believing a protest action was moral, the researchers found, and finding violence at that protest acceptable. This relationship held true throughout the study, regardless of political orientation.

The researchers' next goal was to identify the impact of exposure to people of like beliefs. To do this, participants rated their feelings when they were told that most people in the U.S. shared their views. While the intensity of participants' moral views created the potential for violence, the researchers found, violence resulted when only actively validated by others with similar views.

Having one's moral outrage supported by others on social media, the professors concluded, may explain the spike in violence in recent protests.

While respect for privacy remains critical, governments and law enforcement can use the social media trend to pinpoint the moments when moral outrage can turn deadly. Perhaps most importantly, however, the research also suggests practical tactics for calming violent tendencies before they get out of control. To reduce real-life protest violence, they wrote, it's critical that social media sites include a variety of voices. It's another reason, if any were needed, that a bit of judicious exposure to other views is healthy for everyone.

------

This story originally ran on Rice Business Wisdom.

Marlon Mooijman is an assistant professor of Organizational Behavior. He teaches in the undergraduate business minor program and MBA full-time program.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH student earns prestigious award for cancer vaccine research

up-and-comer

Cole Woody, a biology major in the College of Natural Sciences and Mathematics at the University of Houston, has been awarded a Barry Goldwater Scholarship, becoming the first sophomore in UH history to earn the prestigious prize for research in natural sciences, mathematics and engineering.

Woody was recognized for his research on developing potential cancer vaccines through chimeric RNAs. The work specifically investigates how a vaccine can more aggressively target cancers.

Woody developed the MHCole Pipeline, a bioinformatic tool that predicts peptide-HLA binding affinities with nearly 100 percent improvement in data processing efficiency. The MHCole Pipeline aims to find cancer-specific targets and develop personalized vaccines. Woody is also a junior research associate at the UH Sequencing Core and works in Dr. Steven Hsesheng Lin’s lab at MD Anderson Cancer Center.

“Cole’s work ethic and dedication are unmatched,” Preethi Gunaratne, director of the UH Sequencing Core and professor of Biology & Biochemistry at NSM, said in a news release. “He consistently worked 60 to 70 hours a week, committing himself to learning new techniques and coding the MHCole pipeline.”

Woody plans to earn his MD-PhD and has been accepted into the Harvard/MIT MD-PhD Early Access to Research Training (HEART) program. According to UH, recipients of the Goldwater Scholarship often go on to win various nationally prestigious awards.

"Cole’s ability to independently design and implement such a transformative tool at such an early stage in his career demonstrates his exceptional technical acumen and creative problem-solving skills, which should go a long way towards a promising career in immuno-oncology,” Gunaratne added in the release.

Houston founder on shaping the future of medicine through biotechnology and resilience

Guest Column

Living with chronic disease has shaped my life in profound ways. My journey began in 5th grade when I was diagnosed with Scheuermann’s disease, a degenerative disc condition that kept me sidelined for an entire year. Later, I was diagnosed with hereditary neuropathy with liability to pressure palsies (HNPP), a condition that significantly impacts nerve recovery. These experiences didn’t just challenge me physically, they reshaped my perspective on healthcare — and ultimately set me on my path to entrepreneurship. What started as personal health struggles evolved into a mission to transform patient care through innovative biotechnology.

A defining part of living with these conditions was the diagnostic process. I underwent nerve tests that involved electrical shocks to my hands and arms — without anesthesia — to measure nerve activity. The pain was intense, and each test left me thinking: There has to be a better way. Even in those difficult moments, I found myself thinking about how to improve the tools and processes used in healthcare.

HNPP, in particular, has been a frustrating condition. For most people, sleeping on an arm might cause temporary numbness that disappears in an hour. For me, that same numbness can last six months. Even more debilitating is the loss of strength and fine motor skills. Living with this reality forced me to take an active role in understanding my health and seeking solutions, a mindset that would later shape my approach to leadership.

Growing up in Houston, I was surrounded by innovation. My grandfather, a pioneering urologist, was among the first to introduce kidney dialysis in the city in the 1950s. His dedication to advancing patient care initially inspired me to pursue medicine. Though my path eventually led me to healthcare administration and eventually biotech, his influence instilled in me a lifelong commitment to medicine and making a difference.

Houston’s thriving medical and entrepreneurial ecosystems played a critical role in my journey. The city’s culture of innovation and collaboration provided opportunities to explore solutions to unmet medical needs. When I transitioned from healthcare administration to founding biotech companies, I drew on the same resilience I had developed while managing my own health challenges.

My experience with chronic disease also shaped my leadership philosophy. Rather than accepting diagnoses passively, I took a proactive approach questioning assumptions, collaborating with experts, and seeking new solutions. These same principles now guide decision-making at FibroBiologics, where we are committed to developing groundbreaking therapies that go beyond symptom management to address the root causes of disease.

The resilience I built through my health struggles has been invaluable in navigating business challenges. While my early career in healthcare administration provided industry insights, launching and leading companies required the same determination I had relied on in my personal health journey.

I believe the future of healthcare lies in curative treatments, not just symptom management. Fibroblast cells hold the promise of engaging the body’s own healing processes — the most powerful cure for chronic diseases. Cell therapy represents both a scientific breakthrough and a significant business opportunity, one that has the potential to improve patient outcomes while reducing long-term healthcare costs.

Innovation in medicine isn’t just about technology; it’s about reimagining what’s possible. The future of healthcare is being written today. At FibroBiologics, our mission is driven by more than just financial success. We are focused on making a meaningful impact on patients’ lives, and this purpose-driven approach helps attract talent, engage stakeholders, and differentiate in the marketplace. Aligning business goals with patient needs isn’t just the right thing to do, it’s a powerful model for sustainable growth and lasting innovation in biotech.

---

Pete O’Heeron is the CEO and founder of FibroBiologics, a Houston-based regenerative medicine company.


Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.