This month's Brain Capital event aimed to position Houston and Texas as global leaders in the brain economy space. Photo via Getty Images

Brain Capital: The New Competitive Edge in a Shifting Economy, a two-day meeting held at the TMC3 Collaborative Building on May 21-22, brought together global business and policy leaders to advance brain health initiatives. The event concluded with the announcement of Texas-focused strategies that will be presented at the G7 Summit in Calgary this June, aiming to position the state as a leading hub for brain health research.

According to an analysis by the McKinsey Health Institute, investing in brain health interventions has the potential to generate a $260 billion boost to Texas’ GDP. Brain health conditions are responsible for more than $1 trillion in lost productivity globally, and the costs are expected to increase to nearly $16 trillion by 2030, according to organizers of the event.

The Texas Legislature recently passed legislation to establish the Dementia Prevention Research Institute of Texas (DPRIT), which includes a $3 billion investment over 10 years. Leaders at the Brain Capital event announced the launch of an advocacy campaign to foster support for DPRIT, which will appear as a November 2025 ballot measure.

“Our work to deliver better brain health to Texas and the world is only just beginning,” Dr. Jochen Reiser, president of The University of Texas Medical Branch (UTMB) and CEO of the UTMB Health System, said in a news release. “Investing in brain capital means protecting our cognitive health, boosting economic growth and securing a future-ready workforce – goals that we believe Texans will rally behind.”

Additionally, the Center for Houston’s Future also announced its goal to make the brain economy a key part of its new plan for the Houston region, called Vision 2050. The Center for Houston’s Future’s goal is to position Houston to become the global leader in the brain economy space, which will serve as a blueprint for other cities

“Houston has a clear track record leading the transition of industry sectors,” David Gow, CEO of the Center for Houston’s Future, said in a news release. “By launching a focused Brain Economy transition plan, Houston can integrate neuroscience, prevention, workforce resilience and cognitive innovation across sectors – preparing businesses and communities for an AI-driven future. Houston has the talent, infrastructure and vision to lead the nation in the next great economic transformation.”

Gow is the founder and chairman of Gow Media, InnovationMap's parent company.

Speakers at the event included executives from Shell Oil Co., scientists from Johns Hopkins Bloomberg School of Public Health, professors from Rice University, representatives from D.C.-based UsAgainstAlzheimer’s, and others. Learn more here.

Rice has developed a COVID diagnostic test that uses a cell phone. Photo courtesy of Rice University

Rice University develops 2 new innovative tools to detect COVID-19

pandemic tech

Rice University is once again spearheading research and solutions in the ongoing battle with COVID-19. The university announced two developing innovations: a "real-time sensor" to detect the virus and a cellphone tool that can detect the disease in less than an hour.

Sensing COVID
Researchers at Rice received funding for up to $1 million to develop the real-time sensor that promises to detect minute amounts of the airborne virus.

Teams at Rice and the University of Texas Medical Branch (UTMB) at Galveston are working to develop a thin film electronic device that senses as few as eight SARS-CoV-2 viruses in 10 minutes of sampling air flowing at 8 liters per minute, per a press release.

Dubbed the Real-Time Amperometric Platform Using Molecular Imprinting for Selective Detection of SARS-CoV-2 (or, RAPID), the project has been funded by the Defense Advanced Research Projects Agency (DARPA), Rice notes. Further funding will be contingent upon a successful demonstration of the technology.

Attacking with an app
Meanwhile, the university announced that its engineers have developed a plug-in tool that can diagnose COVID-19 in around 55 minutes. The tool utilizes programmed magnetic nanobeads and a tool that plugs into a basic cellphone.

First, a stamp-sized microfluidic chip measures the concentration of SARS-CoV-2 nucleocapsid protein in blood serum from a standard finger prick.

Then, nanobeads bind to SARS-CoV-2 N protein, a biomarker for COVID-19, in the chip and transport it to an electrochemical sensor that detects minute amounts of the biomarker. Paired with a Google Pixel 2 phone and a plug-in tool, researchers quickly secured a positive diagnosis.

This, researchers argue, simplifies sample handling compared to swab-based PCR tests that must be analyzed in a laboratory.

"What's great about this device is that it doesn't require a laboratory," said Rice engineer Peter Lillehoj in a statement. "You can perform the entire test and generate the results at the collection site, health clinic or even a pharmacy. The entire system is easily transportable and easy to use."

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice leads Texas colleges on LinkedIn's first-ever career success ranking

honor roll

Houston’s Rice University leads the Texas schools in LinkedIn’s first-ever ranking of the 50 best U.S. colleges for long-term career success.

Rice appears at No. 31 in the ranking. Southern Methodist University, located in the Dallas suburb of University Park, lands at No. 37 and the University of Texas at Austin shows up at No. 46.

LinkedIn, a career networking site, says the ranking is based on exclusive data about alumni, such as job placement rates, advancement into senior-level jobs, post-graduate formation of startups, and pre-graduation internships.

“A four-year bachelor’s degree is a significant investment of time and money, especially as tuition costs rise and the job market shifts,” the LinkedIn report says. “For millions of Americans, the return on investment is worth it. Those who earn the degree can see an enduring impact on their earning potential and overall career trajectory.”

Where someone earns a degree can have an even bigger impact, according to LinkedIn, as graduates of top programs often land jobs more rapidly, build strong professional networks, and rise to leadership roles more quickly.

“Long-term success isn’t just about landing a great first job; it’s about sustained career growth and opportunity years after graduation,” Andrew Seaman, senior editor-at-large for jobs and career development at LinkedIn News, told Fortune. “For this list, that means looking at how well a school sets alumni up for the long haul.”

Here’s a breakdown of some of the data about the three Texas schools on the LinkedIn list:

Rice University

  • Top industries of graduates: Technology, business consulting, higher education
  • Top post-graduation destinations: Houston, San Francisco Bay Area, New York City
  • Notable skills: MATLAB programming language, engineering design, data science

Southern Methodist University

  • Top industries of graduates: Financial services, business consulting
  • Top post-graduation destinations: Dallas, New York City, Los Angeles
  • Most notable skills: AMPL programming language, Avid iNews content creation system, data science

University of Texas at Austin

  • Top industries of graduates: Technology, medical practices, advertising
  • Top post-graduation destinations: Austin, Dallas, Houston
  • Most notable skills: SOLIDWORKS computer-aided design software, architecture, Avid Media Composer video editing software

TMC lands $3M grant to launch cancer device accelerator

cancer funding

A new business accelerator at Houston’s Texas Medical Center has received a nearly $3 million grant from the Cancer Prevention and Research Institute of Texas.

The CPRIT grant, awarded to the Texas Medical Center Foundation, will help launch the Accelerator for Cancer Medical Devices. The accelerator will support emerging innovators in developing prototypes for cancer-related medical devices and advancing them from prototype to clinical trials.

“The translation of new cancer-focused precision medical devices, often the width of a human hair, creates the opportunity to develop novel treatments for cancer patients,” the accelerator posted on the CPRIT website.

Scientist, consultant, and entrepreneur Jason Sakamoto, associate director of the TMC Center for Device Innovation, will oversee the accelerator. TMC officials say the accelerator builds on the success of TMC Innovation’s Accelerator for Cancer Therapeutics.

Each participant in the Accelerator for Cancer Medical Devices program will graduate with a device prototype, a business plan, and a “solid foundation” in preclinical and clinical strategies, TMC says. Participants will benefit from “robust support” provided by the TMC ecosystem, according to the medical center, and “will foster innovation into impactful and life-changing cancer patient solutions in Texas and beyond.”

In all, CPRIT recently awarded $27 million in grants for cancer research. That includes $18 million to attract top cancer researchers to Texas. Houston institutions received $4 million for recruitment:

  • $2 million to the University of Texas MD Anderson Cancer Center to recruit Rodrigo Romero from Memorial Sloan Kettering Cancer Center in New York City
  • $2 million to MD Anderson to recruit Eric Gardner from Weill Cornell Medicine in New York City

A $1 million grant also went to Baylor College of Medicine researcher Dr. Akiva Diamond. He is an assistant professor at the medical college and is affiliated with Baylor’s Dan L. Duncan Comprehensive Cancer Center.