It's time for a broader approach to ensure that the U.S. meets energy demands and leads the world in innovation and education. Photo via Getty Images

U.S. energy consumption is projected to rise nearly 20 percent over the next decade — driven by advancements like AI, increasing electrification, and the growing demand for electric vehicles. While attention often centers on the technologies that generate power, the driver behind this transformation is the skilled workforce, which comprises men and women dedicated to enabling the nation's growth. Ensuring a steady supply of qualified workers is imperative for meeting the energy demands of the coming decade.

Developing this talent pipeline starts with a commitment to education. As the energy landscape evolves rapidly, educators play a crucial role in equipping the next generation with the skills to embrace new technologies and adapt to changing industry demands. This commitment to education is central to the Energy Education Foundation's (EEF) mission. It's also a cornerstone of EEF partner and board member, Coterra Energy's, efforts to be recognized as a leader in energy education.

At a recent Energy Education Exchange, hosted by Coterra and EEF, in collaboration with industry partners such as the American Petroleum Institute (API) and the Consumer Energy Alliance, over 50 educators and industry leaders gathered in Houston to address this need.

During the three-day event, educators, administrators, and industry professionals were immersed in the many facets of the oil and gas industry, learning best practices for incorporating energy education into their programs.

Educators experienced an in-depth tour of the San Jacinto College Center for Petrochemical, Energy, and Technology. As the largest petrochemical training facility in the Gulf Coast region, the center offered a unique look at industry-standard equipment, including a multifunctional glass pilot plant lab, a glycol distillation unit, and 35 specialized training labs. Participants engaged in demonstrations led by faculty and students, exploring circuits, on-campus refineries, and advanced machinery — essential experiences that bring classroom lessons to life.

The event also highlighted efforts at the high school level, exemplified by a presentation and tour at Energy Institute High School in Houston's historic Third Ward. The Institute showcased how project-based learning, robotics, and hands-on fabrication labs are shaping students' skills for the energy sector. The high school's mission aligns perfectly with EEF’s goals: sparking interest in energy among younger students, developing their skills, and paving a pathway toward lifelong careers in the industry.

API's "Lights On" reception concluded the first day, promoting networking among educators and industry professionals. By facilitating these connections, we are ensuring that educators learn about energy careers and establish ongoing relationships that can translate into opportunities for their students.

Keynotes throughout the exchange included Peter Beard, Senior Vice President of the Greater Houston Partnership, and Chris Menefee, President of Unit Drilling Company, who further emphasized the critical need for workforce development. Beard noted, "As our economy grows, we must ensure we have the electrons and the workforce to support that growth." He stressed that aligning skills with job requirements is more than just matching credentials; it's about upskilling and offering real career mobility.

Menefee echoed this sentiment, acknowledging the pressures on educators to prepare students for an ever-changing job market. He underscored his company's commitment to "quality over quantity" in hiring, prioritizing well-trained individuals, and emphasizing the value of strong foundational skills, which begin in the classroom, especially career and technology classrooms.

The Energy Day Festival in Houston provided an additional opportunity for educators and administrators to engage directly with the industry. Thousands attended, visiting booths set up by companies, trade groups, and educational institutions. EEF's own Mobile Energy Learning Units offered interactive exhibits designed to teach students of all ages about energy and career opportunities. The Units appearance at Energy Day was made possible by the American Petroleum Institute.

Looking forward, the U.S. must expand opportunities for the next generation of energy workers and provide educators with the necessary resources. The Energy Education Exchange is a significant step forward, but one initiative alone cannot shape an entire workforce. All stakeholders involved must invest in tools, training, and programs that empower educators and provide opportunities for students. As Domestic Policy Advisor Neera Tanden recently stated, "Apprenticeships are essential for advancing the economy and building critical skills."

It's time for a broader approach to ensure that the U.S. meets energy demands and leads the world in innovation and education. At the Energy Education Foundation, we are proud to be at the forefront of this mission, working alongside Coterra and other partners. By empowering educators, we empower the next generation—one that will fuel our nation's future. Together, we can build a workforce ready for the challenges ahead.

———

Kristen Barley is the executive director of the Energy Education Foundation, an organization dedicated to inspiring the next generation of energy leaders by providing comprehensive, engaging education that spans the entire energy spectrum.

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC lands $3M grant to launch cancer device accelerator

cancer funding

A new business accelerator at Houston’s Texas Medical Center has received a nearly $3 million grant from the Cancer Prevention and Research Institute of Texas.

The CPRIT grant, awarded to the Texas Medical Center Foundation, will help launch the Accelerator for Cancer Medical Devices. The accelerator will support emerging innovators in developing prototypes for cancer-related medical devices and advancing them from prototype to clinical trials.

“The translation of new cancer-focused precision medical devices, often the width of a human hair, creates the opportunity to develop novel treatments for cancer patients,” the accelerator posted on the CPRIT website.

Scientist, consultant, and entrepreneur Jason Sakamoto, associate director of the TMC Center for Device Innovation, will oversee the accelerator. TMC officials say the accelerator builds on the success of TMC Innovation’s Accelerator for Cancer Therapeutics.

Each participant in the Accelerator for Cancer Medical Devices program will graduate with a device prototype, a business plan, and a “solid foundation” in preclinical and clinical strategies, TMC says. Participants will benefit from “robust support” provided by the TMC ecosystem, according to the medical center, and “will foster innovation into impactful and life-changing cancer patient solutions in Texas and beyond.”

In all, CPRIT recently awarded $27 million in grants for cancer research. That includes $18 million to attract top cancer researchers to Texas. Houston institutions received $4 million for recruitment:

  • $2 million to the University of Texas MD Anderson Cancer Center to recruit Rodrigo Romero from Memorial Sloan Kettering Cancer Center in New York City
  • $2 million to MD Anderson to recruit Eric Gardner from Weill Cornell Medicine in New York City

A $1 million grant also went to Baylor College of Medicine researcher Dr. Akiva Diamond. He is an assistant professor at the medical college and is affiliated with Baylor’s Dan L. Duncan Comprehensive Cancer Center.

Houston students develop cost-effective glove to treat Parkinson's symptoms

smart glove

Two Rice undergraduate engineering students have developed a non-invasive vibrotactile glove that aims to alleviate the symptoms of Parkinson’s disease through therapeutic vibrations.

Emmie Casey and Tomi Kuye developed the project with support from the Oshman Engineering Design Kitchen (OEDK) and guidance from its director, Maria Oden, and Rice lecturer Heather Bisesti, according to a news release from the university.

The team based the design on research from the Peter Tass Lab at Stanford University, which explored how randomized vibratory stimuli delivered to the fingertips could help rewire misfiring neurons in the brain—a key component of Parkinson’s disease.

Clinical trials from Stanford showed that coordinated reset stimulation from the vibrations helped patients regain motor control and reduced abnormal brain activity. The effects lasted even after users removed the vibrotactile gloves.

Casey and Kuye set out to replicate the breakthrough at a lower cost. Their prototype replaced the expensive motors used in previous designs with motors found in smartphones that create similar tiny vibrations. They then embedded the motors into each fingertip of a wireless glove.

“We wanted to take this breakthrough and make it accessible to people who would never be able to afford an expensive medical device,” Casey said in the release. “We set out to design a glove that delivers the same therapeutic vibrations but at a fraction of the cost.”

Rice’s design also targets the root of the neurological disruption and attempts to retrain the brain. An early prototype was given to a family friend who had an early onset of the disease. According to anecdotal data from Rice, after six months of regularly using the gloves, the user was able to walk unaided.

“We’re not claiming it’s a cure,” Kuye said in the release. “But if it can give people just a little more control, a little more freedom, that’s life-changing.”

Casey and Kuye are working to develop a commercial version of the glove priced at $250. They are taking preorders and hope to release 500 pairs of gloves this fall. They've also published an open-source instruction manual online for others who want to try to build their own glove at home. They have also formed a nonprofit and plan to use a sliding scale price model to help users manage the cost.

“This project exemplifies what we strive for at the OEDK — empowering students to translate cutting-edge research into real-world solutions,” Oden added in the release. “Emmie and Tomi have shown extraordinary initiative and empathy in developing a device that could bring meaningful relief to people living with Parkinson’s, no matter their resources.”