Artist collective brings carbon-absorbing murals to Houston

WHEN FINE ART MEETS FRESH AIR

For 713 Day, UXD created carbon-absorbing mural "(HUE)STON HARMONY" in collaboration with Downtown Houston+ and local artist David Maldonado. Photo courtesy of Egidio Narvaez

Anthony Rose, the CEO of creative agency United By Design, is on a mission to brighten Houston’s urban spaces and improve the city’s air quality one carbon-absorbing mural at a time.

Rose originally founded United By Design, or UXD, in 2019 to connect muralists like himself and commercial businesses seeking to beautify their spaces and form brand identities. After creating vibrant murals for Lockhart Elementary School, the Houston Astros, and Smoothie King, Rose expanded UXD’s vision to include environmental sustainability in their artistic collaborations in 2022.

“This city’s vibrant art scene and growing focus on sustainability makes it an ideal location for our projects,” Rose says. “We’re not just creating eco-friendly murals, we’re reimagining how art can actively contribute to environmental solutions.”

In search of ecologically-conscious paints, Rose formed a partnership with Spain-based, natural paint company Graphenstone. Rose says he was drawn to the company’s eponymous Graphenstone coating because of its nontoxic ingredients and exclusively uses the product for UXD’s carbon-absorbing murals.

"Between Land and Sky" by artist David Maldonado was UXD's first carbon-absorbing painting. Photo courtesy of Dario DeLeon and Tommy Valdez

The Graphenstone coating consists of a limestone base which goes through a process called photocatalysis, during which carbon dioxide from the atmosphere is absorbed into the surface, and is then sealed in with graphene, a thin layer of carbon atoms. The murals absorb carbon dioxide throughout the coat’s drying process which typically takes 30 days.

“Each of our murals absorbs about 1600 grams of CO2 during that curing process which is the equivalent daily absorption of about 33 growing trees,” Rose explains.

UXD’s largest carbon-absorbing mural to date is a floor-to-ceiling panorama in downtown Houston’s historic Mellie Esperson building, home to the company’s new creative hub. Painted by Houston-born artist Emily Ding, the mural is a tribute to the establishment’s namesake: an innovative, early 20th century entrepreneur who constructed the opulent building.

"Future's Past" by Emily Ding in partnership with UXD tells the story of the Mellie Esperson building. Photo courtesy of Dario DeLeon

Rose says UXD plans to expand their carbon-absorbing murals project in collaboration with more local artists and establishments, while creating an artist-in-residency program themed around sustainability. Though Rose acknowledges in the grand scheme of carbon pollution these murals are not a silver bullet, he says the non-toxic paints are encouraging conversations about how artists can be conservation-minded.

“We’re trying to figure out how art as a messaging tool can help break down scientific data, a language not many people practice daily, can break down barriers and help bridge the gap to a more intuitive knowledge of sustainability,” Rose says. “We’re bringing the community together, helping them feel empowered, and giving them actionable information to help them live more sustainable lives.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10 most-promising energy tech startups named at annual Houston event

top companies

Investors from around the world again identified the most-promising energy tech startups at the Rice Alliance for Technology and Entrepreneurship's annual event.

"The recognition that Houston is the epicenter of energy transition is growing. It's something we are championing as much as possible so that the world can know exactly what we're doing," Paul Cherukuri, chief innovation officer at Rice University says at the 21st annual Energy Tech Venture Forum.

The event took place during the inaugural Houston Energy and Climate Startup Week, and nearly 100 startups from 23 states and seven countries pitched investors Wednesday, September 11, and Thursday, September 12. At the conclusion of the event, the investors decided on 10 companies deemed "most promising" from the presentations.

This year's selected companies are:

  • Revterra, a Houston-based company innovating within kinetic battery technology to enable faster and cleaner electric vehicle charging.
  • From Austin, 360 Mining is a modular data center provider for the oil and gas producers.
  • New York company Andium is a centralized and optimized operations platform for large energy companies.
  • Elementium Materials, a local Katy-based company, created its battery technology that originated out of MIT.
  • Splight is a San Mateo, California-based technology platform that provides real-time operational data based on inverter-based resources assets.
  • Los Angeles-based Mitico, one of the Rice Alliance Clean Energy Accelerator's class 4 participants, provides services and equipment for carbon capture through its granulated metal carbonate sorption technology.
  • From Cambridge, Massachusetts, Osmoses is changing the way molecular gas separations are performed within the chemical, petrochemical, and energy industries.
  • Rice Alliance Clean Energy Accelerator class 4 participant CORROLYTICS, based in Houston, has a corrosion detection and monitoring technology. The company also won over the crowd and secured the People's Choice win too.
  • Ardent, based in New Castle, Delaware, has developed a membrane technology for point-source carbon capture.
  • New Haven, Connecticut-based Oxylus Energy produces an alternative fuel from converting CO2 into green methanol.

Last year, investors named its selection of most-promising companies at Rice.

"We have a responsibility as a city to lead energy transition," Cherukuri continues. "A lot of the investments we're making at Rice are going to change the world."

Scientists use Houston rainwater to explore origins of life on Earth

let it rain

A flask of Houston’s rain helped answer a long-running question about the origin of cellular life.

The solution is proposed by two University of Houston scientists, William A. Brookshire Department of Chemical Engineering (UH ChBE) former grad student Aman Agrawal (now a postdoctoral researcher at University of Chicago’s Pritzker School of Molecular Engineering) and Alamgir Karim, UH Dow Chair and Welch Foundation Professor of chemical and biomolecular engineering, and director of both the International Polymer & Soft Matter Center and the Materials Engineering Program at UH. They were joined by UChicago PME Dean Emeritus Matthew Tirrell and Nobel Prize-winning biologist Jack Szostak in an article published last week in Scientific Advances.

For two decades, scientists like Szostak have hypothesized that RNA fragments were the first components of life to form in the Earth’s primordial seas 3.8 million years ago. Although DNA is an essential component of cellular life, it can’t fold proteins, making it unlikely to be the initial starting point. Since RNA can fold proteins, it could have been the catalyst for cellular growth and evolution.

The problem is that seawater molecules allow RNA to bond and change too quickly, often within minutes. Rapid dissipation means no segregation of material, and thus no evolution. Szostak himself proved in 2014 that regular seawater doesn’t allow RNA fragments to form the membranes necessary for cellular life.

Then along comes Agrawal. He wasn’t looking into the origin of life. He was an engineer studying the properties of complex liquids for his doctorate. Karim was his thesis adviser and introduced Agrawal to Tirrell, who brought up the RNA problem over a lunch and some theories about how if the water was distilled it may have solved it. Where would you get distilled water 3.8 billion years ago?

“I spontaneously said ‘rainwater,’” says Karim. “His eyes lit up and he was very excited at the suggestion. So, you can say it was a spontaneous combustion of ideas or ideation.”

Using RNA samples from Szostak, they saw that distilled water increased the differences in exchange rate between samples from minutes to days, long enough for the RNA to begin mutation.

Distilled lab water is nothing like prehistoric rain, though. Luckily, a typical Houston downpour occurred during the research. Agrawal and fellow UH graduate student, Anusha Vonteddu ran outside with beakers to collect some. The samples again formed meshy walls, separating the RNA and possibly showing how life began from these fragments billions of years ago.

“The molecules we used to build these protocells are just models until more suitable molecules can be found as substitutes,” Agrawal said. “While the chemistry would be a little bit different, the physics will remain the same.”

------

This article originally ran on CultureMap.