A national research institute recently opened a new lab and outpost adjacent to the University of Houston's campus. Photo via UH.edu

A national organization has opened a new Houston outpost at a local university campus.

The Electrochemical Safety Research Institute, or ESRI, of UL Research Institutes opened the doors to a new laboratory in Houston in November. The new space was established to further research renewable energy technologies.

“As the world transitions from fossil fuels to sustainable energy, we are working with research teams across several organizations to lay the scientific groundwork for safe and reliable energy storage alternatives,” says Judy Jeevarajan, ESRI’s executive director, in a news release. “Since several of our research partners are based in Houston, the natural progression was to open our own laboratory in the area.”

The lab is housed in the University of Houston Technology Bridge, a startup park next to the university’s main campus. A team of ESRI’s research scientists will have access to explore the safety and performance of renewable energy technologies. Per the release, ESRI already has ongoing projects with UH within hydrogen research, solid-state batteries, and the synthesis of magnesium-ion separators.

“We are significantly expanding both our capacity and scope to better meet today’s increasingly urgent safety challenges,” says Christopher J. Cramer, ULRI’s chief research officer. “Our new Houston facility is one element of that expansion. The lab will strengthen the synergies between ESRI and our research partners in the area and accelerate scientific discoveries to help create a safer, more sustainable world.”

The facility will also act as a homebase for all Houston-area collaborations. Per the release, the new lab "will also facilitate ESRI’s research partnership with Rice University on lithium-ion cell recycling and the research institute’s work with NASA’s Johnson Space Center on thermal runaway mitigation and micro-USB lithium-ion battery safety." The organization also collaborates with Houston-based Stress Engineering Services Inc.

“We’re delighted to welcome the Electrochemical Safety Research Institute to its new home in Houston,” says Chris Taylor, executive director of the Office of Technology Transfer and Innovation at the University of Houston, in the release. “Together, we can build upon our research culture of collaboration as we pursue innovations for the greater good.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."

UH study uncovers sustainable farming methods for hemp production

growth plan

A new University of Houston study of hemp microbes can potentially assist scientists in creating special mixtures of microbes to make hemp plants produce more CBD or have better-quality fibers.

The study, led by Abdul Latif Khan, an assistant professor of biotechnology at the Cullen College of Engineering Technology Division, was published in the journal Scientific Reports from the Nature Publishing Group. The team also included Venkatesh Balan, UH associate professor of biotechnology at the Cullen College of Engineering Technology Division; Aruna Weerasooriya, professor of medicinal plants at Prairie View A&M University; and Ram Ray, professor of agronomy at Prairie View A&M University.

The study examined microbiomes living in and around the roots (rhizosphere) and on the leaves (phyllosphere) of four types of hemp plants. The team at UH compared how these microorganisms differ between hemp grown for fiber and hemp grown for CBD production.

“In hemp, the microbiome is important in terms of optimizing the production of CBD and enhancing the quality of fiber,” Khan said in a news release. “This work explains how different genotypes of hemp harbor microbial communities to live inside and contribute to such processes. We showed how different types of hemp plants have their own special groups of tiny living microbes that help the plants grow and stay healthy.”

The study indicates that hemp cultivation can be improved by better understanding these distinct microbial communities, which impact growth, nutrient absorption, stress resilience, synthesis and more. This could help decrease the need for chemical inputs and allow growers to use more sustainable agricultural practices.

“Understanding these microorganisms can also lead to more sustainable farming methods, using nature to boost plant growth instead of relying heavily on chemicals,” Ahmad, the paper’s first author and doctoral student of Khan’s, said the news release.

Other findings in the study included higher fungal diversity in leaves and stems, higher bacterial diversity in roots and soil, and differing microbiome diversity. According to UH, CBD-rich varieties are currently in high demand for pharmaceutical products, and fiber-rich varieties are used in industrial applications like textiles.