The Texas Medical Center Innovation Factory has named the 16 companies making up the inaugural cohort in the Innovate UK Global Incubator Programme. Photo via tmc.edu

Sixteen digital health and medical device startups founded in the United Kingdom have been selected for a customized accelerator at the Texas Medical Center's Innovation Factory.

In partnership with Innovate UK, TMCi created the Innovate UK Global Incubator Programme, a new accelerator that supports UK businesses as they build their United States go-to-market plan. The program builds the BioBridge relationship between TMC and the UK that was originally established five years ago.

“The TMC UK BioBridge program was launched with the UK Department for Business and Trade in 2018 to serve as a gateway for advancing life sciences and foster innovation and research between our two countries," says Ashley McPhail, chief external affairs and administration officer for TMC, in a news release. "We saw an opportunity to work with Innovate UK to develop a larger program with the UK after the success of the 11 companies that previously participated in our health tech accelerator."

The 16 companies will participate in the program from June to November. The cohort is expected to arrive in Houston on June 5 and have access to TMCi's facilities, network of mentors and potential clients, funding, potential customers, and curated programing — all while being a unique entry point into the US. The new offering joins three other globally recognized curriculums: Biodesign, Accelerator for Cancer Therapeutics, and Health Tech.

“TMCi nurtures long-term growth, development, and competitiveness to increase startups chances of success and global expansion," says Emily Reiser, associate director of TMC Innovation. "By bringing their novel technologies and exposing them to a curated selection of TMC’s expert network, startups receive support and evaluation to build, scale, and expand in the US market."

Two of the cohort's specialties include cardiovascular and oncology — two of TMC's strongest areas of expertise — with solutions ranging from surgical devices to AI-enabled risk stratification and hospital efficiency.

Innovate UK is the country's national innovation agency dedicated to supporting business-led innovation in all sectors.

“The United Kingdom is fully committed to improving global healthcare through scientific collaboration," says His Majesty’s Consul General in Texas Richard Hyde in the release. "Through the expansion of the TMC UK BioBridge and in partnership with Innovate UK, this programme will help to expose the brightest and best British companies to the world’s largest medical city. Our companies will collaborate and grow as they work to develop cutting edge technology. The partnership between the UK Government and TMC demonstrates that international collaboration can drive both economic growth and improvement to quality of life.”

The 16 companies making up the inaugural cohort are as follows, according to TMC.

  • AINOSTICS aims to revolutionize the treatment and prevention of neurological conditions, such as dementia, by developing innovative AI-enabled solutions that draw novel insights from routinely acquired non-invasive medical scans to deliver accurate diagnosis and outcome prediction, and in turn facilitate personalized care and timely access to disease-modifying treatments for patients.
  • Alvie is a blended human plus AI-enabled digital solution providing personalised pre and rehabilitation coaching and supportive care for cancer and surgery. Alvie's technology combines data profiling, risk-stratification and tailored prescriptions of health and well-being with curated educational content, targeted behaviour change coaching and expert support through chat messaging and virtual consultations.
  • C the Signs™ is a validated AI cancer prediction platform, which can identify patients at risk of cancer at the earliest and most curable stage of the disease. Used by healthcare professionals, C the Signs can identify which tumor type a patient is at risk of and recommend the most appropriate next step in less than 30 seconds. The platform has detected over 10,000 patients with cancer, with over 50 different types of cancer diagnosed, and with a sensitivity of >98% for cancer.
  • At PEP Health, We believe all patients deserve the best care possible. Our cutting-edge machine-learning technology enables healthcare organisations, regulators, and insurers the real-time, actionable insights they need to have a direct and dramatic impact on patient experiences.
  • PreciousMD improves the lives of lung-cancer and other lung-related illnesses patients worldwide by enabling imaging-based diagnostics needed for personalized treatment pathways.
  • Ufonia is an autonomous telemedicine company, we use large language models and voice AI to increase the capacity of clinical professionals.
  • My mhealth offers digital therapeutics for a range of long-term conditions- COPD, Asthma, Diabetes and Heart Disease. Our product has been successfully deployed in the UK and India, with >100,000 users registered to date. Our solutions empower patients to self-manage their conditions, resulting in dramatic improvements in outcomes, as evidenced through multiple clinical trials and real-world evaluations.
  • At Surgery Hero, we offer a clinically backed solution that ensures whole-human support before and after surgery. We help health systems, employers and health plans cut costs without sacrificing quality of care.
  • Panakeia's software platform enables extremely rapid multi-omics profiling in minutes directly from routinely used tissue images without needing wet lab assays.
  • QV Bioelectronics are striving to deliver longer, better quality lives for brain tumour patients. Using their first-of-its-kind implantable electric field therapy device, GRACE, QV will provide effective, focal & continuous treatment without impacting patient quality of life.
  • 52 North is a med-tech company focused on improving health outcomes and health equity by reinventing care pathways. The NeutroCheck® solution is a finger-prick blood test and digital platform built to significantly improve safety and quality of life for cancer patients, by helping to identify at-home those patients who are at risk of the most fatal side-effect of chemotherapy: neutropenic sepsis.
  • Somnus is fulfilling an unmet need in global healthcare by developing real-time, point of care blood propofol monitoring. Its products will improve the care of sedated and anaesthetised patients, save money for hospitals, and facilitate a major reduction in greenhouse gas emissions.
  • ScubaTx is a breakthrough organ transplant preservation company established to solve the global unmet need for cost-efficient and longer-duration organ preservation technology. ScubaTx has developed a simple, small and affordable device which uses Persufflation to extend the preservation of organs.
  • IBEX is on a mission to help people live active, healthy and productive lives by increasing their access to early diagnosis of osteoporosis. The IBEX BH software as medical device delvers routine, automated assessment of fracture risk from routine radiology for earlier detection and more equitable treatment of osteoporosis.
  • NuVision produces products derived from donated human amniotic membrane that are used in ophthalmology to help patients with chronic, traumatic and post-surgical wounds of the eye to be treated earlier and recover more fully and more quickly. The company’s products are also used in the management of dry eye disease, a debilitating conditions that affects around 17m people in the USA.
  • Calon Cardio-Technology is on a mission to improve quality of life for patients with Left Ventricular Assist devices (LVAD) and reduce the common post operative complications associated with these implantable heart pumps. We plan to do this by introducing a completely wireless heart pump system and augment patient follow-up with built-in remote monitoring capabilities.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston wearable biosensing company closes $13M pre-IPO round

fresh funding

Wellysis, a Seoul, South Korea-headquartered wearable biosensing company with its U.S. subsidiary based in Houston, has closed a $13.5 million pre-IPO funding round and plans to expand its Texas operations.

The round was led by Korea Investment Partners, Kyobo Life Insurance, Kyobo Securities, Kolon Investment and a co-general partner fund backed by SBI Investment and Samsung Securities, according to a news release.

Wellysis reports that the latest round brings its total capital raised to about $30 million. The company is working toward a Korea Securities Dealers Automated Quotations listing in Q4 2026 or Q1 2027.

Wellysis is known for its continuous ECG/EKG monitor with AI reporting. Its lightweight and waterproof S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge.

The company says that the funding will go toward commercializing the next generation of the S-Patch, known as the S-Patch MX, which will be able to capture more than 30 biometric signals, including ECG, temperature and body composition.

Wellysis also reports that it will use the funding to expand its Houston-based operations, specifically in its commercial, clinical and customer success teams.

Additionally, the company plans to accelerate the product development of two other biometric products:

  • CardioAI, an AI-powered diagnostic software platform designed to support clinical interpretation, workflow efficiency and scalable cardiac analysis
  • BioArmour, a non-medical biometric monitoring solution for the sports, public safety and defense sectors

“This pre-IPO round validates both our technology and our readiness to scale globally,” Young Juhn, CEO of Wellysis, said in the release. “With FDA-cleared solutions, expanding U.S. operations, and a strong AI roadmap, Wellysis is positioned to redefine how cardiac data is captured, interpreted, and acted upon across healthcare systems worldwide.”

Wellysis was founded in 2019 as a spinoff of Samsung. Its S-Patch runs off of a Samsung Smart Health Processor. The company's U.S. subsidiary, Wellysis USA Inc., was established in Houston in 2023 and was a resident of JLABS@TMC.

Elon Musk vows to launch solar-powered data centers in space

To Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

Johnson Space Center and UT partner to expand research, workforce development

onward and upward

NASA’s Johnson Space Center in Houston has forged a partnership with the University of Texas System to expand collaboration on research, workforce development and education that supports space exploration and national security.

“It’s an exciting time for the UT System and NASA to come together in new ways because Texas is at the epicenter of America’s space future. It’s an area where America is dominant, and we are committed as a university system to maintaining and growing that dominance,” Dr. John Zerwas, chancellor of the UT System, said in a news release.

Vanessa Wyche, director of Johnson Space Center, added that the partnership with the UT System “will enable us to meet our nation’s exploration goals and advance the future of space exploration.”

The news release noted that UT Health Houston and the UT Medical Branch in Galveston already collaborate with NASA. The UT Medical Branch’s aerospace medicine residency program and UT Health Houston’s space medicine program train NASA astronauts.

“We’re living through a unique moment where aerospace innovation, national security, economic transformation, and scientific discovery are converging like never before in Texas," Zerwas said. “UT institutions are uniquely positioned to partner with NASA in building a stronger and safer Texas.”

Zerwas became chancellor of the UT System in 2025. He joined the system in 2019 as executive vice chancellor for health affairs. Zerwas represented northwestern Ford Bend County in the Texas House from 2007 to 2019.

In 1996, he co-founded a Houston-area medical practice that became part of US Anesthesia Partners in 2012. He remained active in the practice until joining the UT System. Zerwas was chief medical officer of the Memorial Hermann Hospital System from 2003 to 2008 and was its chief physician integration officer until 2009.

Zerwas, a 1973 graduate of the Houston area’s Bellaire High School, is an alumnus of the University of Houston and Baylor College of Medicine.