Rice University bioengineers are designing a vascularized, insulin-producing implant for Type 1 diabetes. Photo by Jeff Fitlow courtesy of Rice University

A team of bioengineers at Houston's own Rice University have created an implant that can produce insulin for Type 1 diabetics. The device is being created by using 3D printing and smart biomaterials.

Omid Veiseh, an assistant professor of bioengineering, and Jordan Miller, associate professor of bioengineering, have been working on the project for three years and have received support from JDRF by way of a grant. Veiseh has a decade of experience developing biomaterials that protect implanted cell therapies from the immune system an Miller has spent more than 15 years specializing in 3D print tissues with vasculature, or networks of blood vessels.

"If we really want to recapitulate what the pancreas normally does, we need vasculature," Veiseh says in a news release. "And that's the purpose of this grant with JDRF. The pancreas naturally has all these blood vessels, and cells are organized in particular ways in the pancreas. Jordan and I want to print in the same orientation that exists in nature."

The challenge with Type 1 diabetes is balancing insulin intake, and studies estimate that less than a third of Type 1 diabetics in the U.S. are able to achieve target blood glucose levels consistently. Veiseh and Miller are working toward demonstrating that their implants can properly regulate blood glucose levels of diabetic mice for at least six months. To do that, they'll need to give their engineered beta cells the ability to respond to rapid changes in blood sugar levels.

"We must get implanted cells in close proximity to the bloodstream so beta cells can sense and respond quickly to changes in blood glucose," Miller says, adding that the insulin-producing cells should be no more than 100 microns from a blood vessel. "We're using a combination of pre-vascularization through advanced 3D bioprinting and host-mediated vascular remodeling to give each implant several shots at host integration."

Another challenge these experts are facing is a potential delay that can happen if the implant is too slow to respond to high or low blood sugar levels.

"Addressing that delay is a huge problem in this field," Veiseh says. "When you give the mouse — and ultimately a human — a glucose challenge that mimics eating a meal, how long does it take that information to reach our cells, and how quickly does the insulin come out?"

By incorporating blood vessels in their implant, he and Miller hope to allow their beta-cell tissues to behave in a way that more closely mimics the natural behavior of the pancreas.

Last month was National Diabetes Awareness Month and Houston-based JDRF Southern
Texas Chapter has some examples of how technology is helping people with type 1 diabetes. Photo courtesy of JDRF

Houston expert: New technologies are improving lives of those living with type 1 diabetes

Guest column

Type 1 diabetes (T1D) is an autoimmune disease where insulin-producing beta cells in the pancreas are mistakenly destroyed by the body's immune system. Insulin is vital in controlling blood-sugar or glucose levels. Not only do you need proper blood-sugar levels for day-to-day energy, but when blood-sugar levels get too high (hyperglycemia) or too low (hypoglycemia), it can cause serious problems and even death. Because of this, those with T1D are dependent on injections or pumps to survive.

The causes of T1D are not fully known, and there is currently no cure; however, advancing technologies are making it easier to live with T1D.

Monitoring

Those who have had T1D for decades might recall having to pee into a vial and test reagent strips in order to check their blood-sugar levels. Thankfully, this evolved into glucometers, or glucose meters. With a glucometer, those with T1D prick their finger and place a drop on the edge of the test strip, which is connected to the monitor that displays their results. Nowadays, glucometers, much like most T1D tech, can be Bluetooth enabled and sync with a smartphone.

From there, scientists have developed the continuous glucose monitor (CGM) so that those with T1D can monitor their blood sugar 24/7. All you need to do is insert a small sensor under the skin. The sensor then measures glucose levels every few minutes, and that information can then be transmitted to smartphones, computers and even smart watches.

Monitoring blood-sugar levels is vital for those with T1D, particularly because it helps them stay more aware of their body, know what to do and even what to expect, but they also have to actively control those levels by injecting insulin. Think of a monitor as the "check engine" light. It can tell you that there may be a problem, but it won't fix it for you. To fix it, you would need an injection or a pump.

Pumps and artificial pancreas

The development of insulin pumps has made a huge impact on the lives of those with T1D and parents of children with T1D by making it easier to manage their blood-sugar levels. 50 years ago, the prototype of the insulin pump was so large, it had to be a backpack, but with today's technology, it is about the size of a smartphone. The pump is worn on the outside of the body, and it delivers insulin through a tube which is placed under the skin. Insulin pumps mimic the way a pancreas works by sending out small doses of insulin that are short acting. A pump can also be manipulated depending on each person's needs. For example, you can press a button to deliver a dose with meals and snacks, you can remove it or reduce it when active and it can be programmed to deliver more at certain times or suspend delivery if necessary.

One of the most recent and trending developments in T1D research is the artificial pancreas, or more formally referred to as the automated insulin delivery (AID) systems. Essentially, the artificial pancreas is an insulin pump that works with a CGM. The CGM notifies the insulin pump of your blood-sugar reading, which acts accordingly to restore your blood sugar to the target level. The artificial pancreas allows those with T1D to be even more hands off, as it does essentially everything: It continuously monitors blood-sugar levels, calculates how much insulin you would need, which can be done through smart devices, and automatically delivers insulin through the pump.

Living with T1D is a 24/7/365 battle; however, the advances in technology make it easier and safer to live with the disease. Organizations like JDRF play a huge role in investing in research, advocating for government support and more.

November was National Diabetes Awareness Month, and this year is particularly special for JDRF, as it is the 50th year of the organization. JDRF was founded in 1970 by two moms. The community grew to include scientists, lobbyists, celebrities and children—all determined to improve lives and find cures.

Bound by a will stronger than the disease, this year during National Diabetes Awareness Month (NDAM), JDRF celebrates "The Power of Us." We are reflecting on the power of our community and reminding ourselves and the public of how far we've come in the fight against T1D.


------

Rick Byrd is the executive director of the JDRF Southern Texas Chapter.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice scientist earns $600K NSF award to study distractions in digital age

fresh funding

Rice University psychologist Kirsten Adam has received a $600,000 National Science Foundation CAREER Award to research how visual distractions like phone notifications, flashing alerts, crowded screens and busy workspaces can negatively impact focus—and how the brain works to try to regain it.

The highly competitive five-year NSF grants are given to career faculty members with the potential to serve as academic models and leaders in research and education. Adam’s work will aim to clarify how the brain refocuses in the age of screens, instant gratification and other lingering distractions. The funding will also be used to train graduate students in advanced cognitive neuroscience methods, expand access to electroencephalography (EEG) and for public data sharing.

“Kirsten is a valued member of the School of Social Sciences, and we are thrilled that she has been awarded the prestigious NSF CAREER,” Rachel Kimbro, dean of social sciences, said in a news release. “Because distractions continue to increase all around us, her research is timely and imperative to understanding their widespread impacts on the human brain.”

In Adam’s lab, participants complete simplified visual search tasks while their brain activity is recorded using EEG, allowing researchers to measure attention shifts in real time. This process then captures the moment attention is drawn from a goal and how much effort it takes to refocus.

According to Rice, Adam’s work will test long-standing theories about distraction. The research is meant to have real-world implications for jobs and aspects of everyday life where attention to detail is key, including medical imaging, airport security screening and even driving.

“At any given moment, there’s far more information in the world than our brains can process,” Adam added in the release. “Attention is what determines what reaches our awareness and what doesn’t.”

Additionally, the research could inform the design of new technologies that would support focus and decision-making, according to Rice.

“We’re not trying to make attention limitless,” Adam added. “We’re trying to understand how it actually works, so we can stop designing environments and expectations that fight against it.”

12 Houston climatetech startups join Greentown Labs' growing incubator

Startup Talk

More than 40 climatetech startups joined the Greentown Labs Houston community in the second half of 2025, 12 of which hail from the Bayou City.

The companies are among a group of nearly 70 total that joined the climatetech incubator, which is co-located in Houston and Boston, in Q3 and Q4.

The new companies that have joined the Houston incubator specialize in a variety of clean energy applications, from green hydrogen-producing water-splitting cycles to drones that service wind turbines.

The local startups that joined Greentown Houston include:

  • Houston-based Wise Energie, which delivers turnkey microgrids that blend vertical-axis wind, solar PV, and battery storage into a single, silent system.
  • The Woodlands-based Resollant, which is developing compact, zero-emissions hydrogen and carbon reactors to provide low-cost, scalable clean hydrogen and high-purity carbon for the energy and manufacturing sectors.
  • Houston-based ClarityCastle, which designs and manufactures modular, soundproof work pods that replace traditional drywall construction with reusable, low-waste alternatives made from recycled materials.
  • Houston-based WattSto Energy, which manufactures vanadium redox flow batteries to deliver long-duration storage for both grid-scale projects and off-grid microgrids.
  • Houston-based AMPeers, which delivers advanced, high-temperature superconductors in the U.S. at a fraction of traditional costs.
  • Houston-based Biosimo, which is developing bio-based platform chemicals, pioneering sustainable chemistry for a healthier planet and economy.
  • Houston-based Ententia, which offers purpose-built, generative AI for industry.
  • Houston-based GeoKiln Energy Innovation, which is developing a new way to produce clean hydrogen by accelerating natural geologic reactions in iron-rich rock formations using precision electrical heating.
  • Houston-based Timbergrove, which builds AI and IoT solutions that connect and optimize assets—boosting visibility, safety, and efficiency.
  • Houston-based dataVediK, which combines energy-domain expertise with advanced machine learning and intelligent automation to empower organizations to achieve operational excellence and accelerate their sustainability goals.
  • Houston-based Resonant Thermal Systems, which uses a resonant energy-transfer (RET) system to extract critical minerals from industrial and natural brines without using membranes or grid electricity.
  • Houston-based Torres Orbital Mining (TOM),which develops autonomous excavation systems for extreme environments on Earth and the moon, enabling safe, data-driven resource recovery and laying the groundwork for sustainable off-world industry.

Other startups from around the world joined the Houston incubator in the same time period, including:

More than 100 startups joined Greentown this year, according to an end-of-year reflection shared by Greentown CEO Georgina Campbell Flatter.

Flatter joined Greentown in the top leadership role in February 2025. She succeeded former CEO and president Kevin Knobloch, who stepped down in July 2024.

"I moved back to the United States in March 2025 after six years overseas—2,000 miles, three children, and one very patient husband later. Over these months, I’ve had the chance to hear from the entrepreneurs, industry leaders, investors, and partners who make this community thrive. What I’ve experienced has left me brimming with urgent optimism for the future we’re building together," she said in the release.

According to Flatter, Greentown alumni raised more than $2 billion this year and created more than 3,000 jobs.

"Greentown startups and ecosystem leaders—from Boston, Houston, and beyond—are showing that we can move further and faster together. That we don’t have to choose between more energy or lower emissions, or between increasing sustainability and boosting profit. I call this the power of 'and,'" Flatter added. "We’re working for energy and climate, innovation and scale, legacy industry and startups, prosperity for people and planet. The 'and' is where possibility expands."

---

This article originally appeared on EnergyCaptialHTX.com.

Intuitive Machines forms partnership with Italian companies for lunar exploration services

to the moon

Houston-based space technology, infrastructure and services company Intuitive Machines has forged a partnership with two Italian companies to offer infrastructure, communication and navigation services for exploration of the moon.

Intuitive Machines’ agreement with the two companies, Leonardo and Telespazio, paves the way for collaboration on satellite services for NASA, a customer of Intuitive Machines, and the European Space Agency, a customer of Leonardo and Telespazio. Leonardo, an aerospace, defense and security company, is the majority owner of Telespazio, a provider of satellite technology and services.

“Resilient, secure, and scalable space infrastructure and space data networks are vital to customers who want to push farther on the lunar surface and beyond to Mars,” Steve Altemus, co-founder and CEO of Intuitive Machine, said in a news release.

Massimo Claudio Comparini, managing director of Leonardo’s space division, added that the partnership with Intuitive Machines is a big step toward enabling human and robotic missions from the U.S., Europe and other places “to access a robust communications network and high-precision navigation services while operating in the lunar environment.”

Intuitive Machines recently expanded its Houston Spaceport facilities to ramp up in-house production of satellites. The company’s first satellite will launch with its upcoming IM‑3 lunar mission.

Intuitive Machines says it ultimately wants to establish a “center of space excellence” at Houston Spaceport to support missions to the moon, Mars and the region between Earth and the moon.