Rice University bioengineers are designing a vascularized, insulin-producing implant for Type 1 diabetes. Photo by Jeff Fitlow courtesy of Rice University

A team of bioengineers at Houston's own Rice University have created an implant that can produce insulin for Type 1 diabetics. The device is being created by using 3D printing and smart biomaterials.

Omid Veiseh, an assistant professor of bioengineering, and Jordan Miller, associate professor of bioengineering, have been working on the project for three years and have received support from JDRF by way of a grant. Veiseh has a decade of experience developing biomaterials that protect implanted cell therapies from the immune system an Miller has spent more than 15 years specializing in 3D print tissues with vasculature, or networks of blood vessels.

"If we really want to recapitulate what the pancreas normally does, we need vasculature," Veiseh says in a news release. "And that's the purpose of this grant with JDRF. The pancreas naturally has all these blood vessels, and cells are organized in particular ways in the pancreas. Jordan and I want to print in the same orientation that exists in nature."

The challenge with Type 1 diabetes is balancing insulin intake, and studies estimate that less than a third of Type 1 diabetics in the U.S. are able to achieve target blood glucose levels consistently. Veiseh and Miller are working toward demonstrating that their implants can properly regulate blood glucose levels of diabetic mice for at least six months. To do that, they'll need to give their engineered beta cells the ability to respond to rapid changes in blood sugar levels.

"We must get implanted cells in close proximity to the bloodstream so beta cells can sense and respond quickly to changes in blood glucose," Miller says, adding that the insulin-producing cells should be no more than 100 microns from a blood vessel. "We're using a combination of pre-vascularization through advanced 3D bioprinting and host-mediated vascular remodeling to give each implant several shots at host integration."

Another challenge these experts are facing is a potential delay that can happen if the implant is too slow to respond to high or low blood sugar levels.

"Addressing that delay is a huge problem in this field," Veiseh says. "When you give the mouse — and ultimately a human — a glucose challenge that mimics eating a meal, how long does it take that information to reach our cells, and how quickly does the insulin come out?"

By incorporating blood vessels in their implant, he and Miller hope to allow their beta-cell tissues to behave in a way that more closely mimics the natural behavior of the pancreas.

Last month was National Diabetes Awareness Month and Houston-based JDRF Southern
Texas Chapter has some examples of how technology is helping people with type 1 diabetes. Photo courtesy of JDRF

Houston expert: New technologies are improving lives of those living with type 1 diabetes

Guest column

Type 1 diabetes (T1D) is an autoimmune disease where insulin-producing beta cells in the pancreas are mistakenly destroyed by the body's immune system. Insulin is vital in controlling blood-sugar or glucose levels. Not only do you need proper blood-sugar levels for day-to-day energy, but when blood-sugar levels get too high (hyperglycemia) or too low (hypoglycemia), it can cause serious problems and even death. Because of this, those with T1D are dependent on injections or pumps to survive.

The causes of T1D are not fully known, and there is currently no cure; however, advancing technologies are making it easier to live with T1D.

Monitoring

Those who have had T1D for decades might recall having to pee into a vial and test reagent strips in order to check their blood-sugar levels. Thankfully, this evolved into glucometers, or glucose meters. With a glucometer, those with T1D prick their finger and place a drop on the edge of the test strip, which is connected to the monitor that displays their results. Nowadays, glucometers, much like most T1D tech, can be Bluetooth enabled and sync with a smartphone.

From there, scientists have developed the continuous glucose monitor (CGM) so that those with T1D can monitor their blood sugar 24/7. All you need to do is insert a small sensor under the skin. The sensor then measures glucose levels every few minutes, and that information can then be transmitted to smartphones, computers and even smart watches.

Monitoring blood-sugar levels is vital for those with T1D, particularly because it helps them stay more aware of their body, know what to do and even what to expect, but they also have to actively control those levels by injecting insulin. Think of a monitor as the "check engine" light. It can tell you that there may be a problem, but it won't fix it for you. To fix it, you would need an injection or a pump.

Pumps and artificial pancreas

The development of insulin pumps has made a huge impact on the lives of those with T1D and parents of children with T1D by making it easier to manage their blood-sugar levels. 50 years ago, the prototype of the insulin pump was so large, it had to be a backpack, but with today's technology, it is about the size of a smartphone. The pump is worn on the outside of the body, and it delivers insulin through a tube which is placed under the skin. Insulin pumps mimic the way a pancreas works by sending out small doses of insulin that are short acting. A pump can also be manipulated depending on each person's needs. For example, you can press a button to deliver a dose with meals and snacks, you can remove it or reduce it when active and it can be programmed to deliver more at certain times or suspend delivery if necessary.

One of the most recent and trending developments in T1D research is the artificial pancreas, or more formally referred to as the automated insulin delivery (AID) systems. Essentially, the artificial pancreas is an insulin pump that works with a CGM. The CGM notifies the insulin pump of your blood-sugar reading, which acts accordingly to restore your blood sugar to the target level. The artificial pancreas allows those with T1D to be even more hands off, as it does essentially everything: It continuously monitors blood-sugar levels, calculates how much insulin you would need, which can be done through smart devices, and automatically delivers insulin through the pump.

Living with T1D is a 24/7/365 battle; however, the advances in technology make it easier and safer to live with the disease. Organizations like JDRF play a huge role in investing in research, advocating for government support and more.

November was National Diabetes Awareness Month, and this year is particularly special for JDRF, as it is the 50th year of the organization. JDRF was founded in 1970 by two moms. The community grew to include scientists, lobbyists, celebrities and children—all determined to improve lives and find cures.

Bound by a will stronger than the disease, this year during National Diabetes Awareness Month (NDAM), JDRF celebrates "The Power of Us." We are reflecting on the power of our community and reminding ourselves and the public of how far we've come in the fight against T1D.


------

Rick Byrd is the executive director of the JDRF Southern Texas Chapter.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston healthtech leader launches clinical trial for innovative anxiety-treating device

making waves

Houston-based Nexalin Technology’s proprietary neurostimulation device will move forward with a new clinical trial evaluating its treatment of anxiety disorders and chronic insomnia in Brazil.

The first of Nexalin’s Gen-2 15-milliamp neurostimulation devices have been shipped to São Paulo, Brazil, and the study will be conducted at the Instituto de Psiquiatria university hospital (IPq-HCFMUSP). The shipments aim to support the launch of a Phase II clinical trial in adult patients suffering from anxiety and insomnia, according to a news release.

“Brazil is an important emerging market for mental health innovation, and this collaboration marks our first IRB-approved study in the region,” Mike White, CEO of Nexalin, said in the release.

The study will be led by Dr. Andre Russowsky Brunoni, who specializes in neuromodulation and interventional psychiatry. He currently serves as director of the interventional psychiatry division at IPq-HCFMUSP and this summer will join UT Southwestern in Dallas and its Peter O’Donnell Jr. Brain Institute as a professor of psychiatry.

The Phase II study plans to enroll 30 adults in São Paulo and assess the efficacy of Nexalin’s non-invasive deep intracranial frequency stimulation (DIFS™) of the brain in reducing anxiety symptoms and improving sleep quality, according to the company. Using the Hamilton Anxiety Rating Scale (HAM-A), the trial’s goal is a reduction in anxiety symptoms, and assessments of sleep onset latency, total sleep time, overall sleep quality, depressive symptoms and clinical impression of improvement. The company plans to share results in a peer-reviewed scientific journal.

“Anxiety and insomnia are very common conditions that often occur together and cause significant distress,” Brunoni added in the news release. “In this study, we are testing a new, non-invasive brain stimulation technology that has shown promising results in recent research. Our goal is to offer a safe, painless, and accessible alternative to improve people’s well being and sleep quality.”

The Nexalin Gen-2 15-milliamp neurostimulation device has been approved in China, Brazil, and Oman.

The company also enrolled the first patients in its clinical trial at the University of California, San Diego, in collaboration with the VA San Diego Healthcare System for its Nexalin HALO, which looks to treat mild traumatic brain injury and post-traumatic stress disorder in military personnel and the civilian population. It also recently raised $5 million through a public stock offering. Read more here.

Texas university to lead new FAA tech center focused on drones

taking flight

The Texas A&M University System will run the Federal Aviation Administration’s new Center for Advanced Aviation Technologies, which will focus on innovations like commercial drones.

“Texas is the perfect place for our new Center for Advanced Aviation Technologies,” U.S. Transportation Secretary Sean Duffy said in a release. “From drones delivering your packages to powered lift technologies like air taxis, we are at the cusp of an aviation revolution. The [center] will ensure we make that dream a reality and unleash American innovation safely.”

U.S. Sen. Ted Cruz, a Texas Republican, included creation of the center in the FAA Reauthorization Act of 2024. The center will consist of an airspace laboratory, flight demonstration zones, and testing corridors.

Texas A&M University-Corpus Christi will lead the initiative, testing unstaffed aircraft systems and other advanced technologies. The Corpus Christi campus houses the Autonomy Research Institute, an FAA-designated test site. The new center will be at Texas A&M University-Fort Worth.

The College Station-based Texas A&M system says the center will “bring together” its 19 institutions, along with partners such as the University of North Texas in Denton and Southern Methodist University in University Park.

According to a Department of Transportation news release, the center will play “a pivotal role” in ensuring the safe operation of advanced aviation technologies in public airspace.

The Department of Transportation says it chose the Texas A&M system to manage the new center because of its:

  • Proximity to major international airports and the FAA’s regional headquarters in Fort Worth
  • Existing infrastructure for testing of advanced aviation technologies
  • Strong academic programs and industry partnerships

“I’m confident this new research and testing center will help the private sector create thousands of high-paying jobs and grow the Texas economy through billions in new investments,” Cruz said.

“This is a significant win for Texas that will impact communities across our state,” the senator added, “and I will continue to pursue policies that create new jobs, and ensure the Lone Star State continues to lead the way in innovation and the manufacturing of emerging aviation technologies.”

Texas Republicans are pushing to move NASA headquarters to Houston

space city

Two federal lawmakers from Texas are spearheading a campaign to relocate NASA’s headquarters from Washington, D.C., to the Johnson Space Center in Houston’s Clear Lake area. Houston faces competition on this front, though, as lawmakers from two other states are also vying for this NASA prize.

With NASA’s headquarters lease in D.C. set to end in 2028, U.S. Sen. Ted Cruz, a Texas Republican, and U.S. Rep. Brian Babin, a Republican whose congressional district includes the Johnson Space Center, recently wrote a letter to President Trump touting the Houston area as a prime location for NASA’s headquarters.

“A central location among NASA’s centers and the geographical center of the United States, Houston offers the ideal location for NASA to return to its core mission of space exploration and to do so at a substantially lower operating cost than in Washington, D.C.,” the letter states.

Cruz is chairman of the Senate Committee on Commerce, Science, and Transportation; and Babin is chairman of the House Committee on Science, Space, and Technology. Both committees deal with NASA matters. Twenty-five other federal lawmakers from Texas, all Republicans, signed the letter.

In the letter, legislators maintain that shifting NASA’s headquarters to the Houston area makes sense because “a seismic disconnect between NASA’s headquarters and its missions has opened the door to bureaucratic micromanagement and an erosion of [NASA] centers’ interdependence.”

Founded in 1961, the $1.5 billion, 1,620-acre Johnson Space Center hosts NASA’s mission control and astronaut training operations. More than 12,000 employees work at the 100-building complex.

According to the state comptroller, the center generates an annual economic impact of $4.7 billion for Texas, and directly and indirectly supports more than 52,000 public and private jobs.

In pitching the Johnson Space Center for NASA’s HQ, the letter points out that Texas is home to more than 2,000 aerospace, aviation, and defense-related companies. Among them are Elon Musk’s SpaceX, based in the newly established South Texas town of Starbase; Axiom Space and Intuitive Machines, both based in Houston; and Firefly Aerospace, based in the Austin suburb of Cedar Park.

The letter also notes the recent creation of the Texas Space Commission, which promotes innovation in the space and commercial aerospace sectors.

Furthermore, the letter cites Houston-area assets for NASA such as:

  • A strong business environment.
  • A low level of state government regulation.
  • A cost of living that’s half of what it is in the D.C. area.

“Moving the NASA headquarters to Texas will create more jobs, save taxpayer dollars, and reinvigorate America’s space agency,” the letter says.

Last November, NASA said it was hunting for about 375,000 to 525,000 square feet of office space in the D.C. area to house the agency’s headquarters workforce. About 2,500 people work at the agency’s main offices. NASA’s announcement set off a scramble among three states to lure the agency’s headquarters.

Aside from officials in Texas, politicians in Florida and Ohio are pressing NASA to move its headquarters to their states. Florida and Ohio both host major NASA facilities.

NASA might take a different approach, however. “NASA is weighing closing its headquarters and scattering responsibilities among the states, a move that has the potential to dilute its coordination and influence in Washington,” Politico reported in March.

Meanwhile, Congressional Delegate Eleanor Holmes Norton, a Democrat who represents D.C., introduced legislation in March that would prohibit relocating a federal agency’s headquarters (including NASA’s) away from the D.C. area without permission from Congress.

“Moving federal agencies is not about saving taxpayer money and will degrade the vital services provided to all Americans across the country,” Norton said in a news release. “In the 1990s, the Bureau of Land Management moved its wildfire staff out West, only to move them back when Congress demanded briefings on new wildfires.”