Rice University bioengineers are designing a vascularized, insulin-producing implant for Type 1 diabetes. Photo by Jeff Fitlow courtesy of Rice University

A team of bioengineers at Houston's own Rice University have created an implant that can produce insulin for Type 1 diabetics. The device is being created by using 3D printing and smart biomaterials.

Omid Veiseh, an assistant professor of bioengineering, and Jordan Miller, associate professor of bioengineering, have been working on the project for three years and have received support from JDRF by way of a grant. Veiseh has a decade of experience developing biomaterials that protect implanted cell therapies from the immune system an Miller has spent more than 15 years specializing in 3D print tissues with vasculature, or networks of blood vessels.

"If we really want to recapitulate what the pancreas normally does, we need vasculature," Veiseh says in a news release. "And that's the purpose of this grant with JDRF. The pancreas naturally has all these blood vessels, and cells are organized in particular ways in the pancreas. Jordan and I want to print in the same orientation that exists in nature."

The challenge with Type 1 diabetes is balancing insulin intake, and studies estimate that less than a third of Type 1 diabetics in the U.S. are able to achieve target blood glucose levels consistently. Veiseh and Miller are working toward demonstrating that their implants can properly regulate blood glucose levels of diabetic mice for at least six months. To do that, they'll need to give their engineered beta cells the ability to respond to rapid changes in blood sugar levels.

"We must get implanted cells in close proximity to the bloodstream so beta cells can sense and respond quickly to changes in blood glucose," Miller says, adding that the insulin-producing cells should be no more than 100 microns from a blood vessel. "We're using a combination of pre-vascularization through advanced 3D bioprinting and host-mediated vascular remodeling to give each implant several shots at host integration."

Another challenge these experts are facing is a potential delay that can happen if the implant is too slow to respond to high or low blood sugar levels.

"Addressing that delay is a huge problem in this field," Veiseh says. "When you give the mouse — and ultimately a human — a glucose challenge that mimics eating a meal, how long does it take that information to reach our cells, and how quickly does the insulin come out?"

By incorporating blood vessels in their implant, he and Miller hope to allow their beta-cell tissues to behave in a way that more closely mimics the natural behavior of the pancreas.

Last month was National Diabetes Awareness Month and Houston-based JDRF Southern
Texas Chapter has some examples of how technology is helping people with type 1 diabetes. Photo courtesy of JDRF

Houston expert: New technologies are improving lives of those living with type 1 diabetes

Guest column

Type 1 diabetes (T1D) is an autoimmune disease where insulin-producing beta cells in the pancreas are mistakenly destroyed by the body's immune system. Insulin is vital in controlling blood-sugar or glucose levels. Not only do you need proper blood-sugar levels for day-to-day energy, but when blood-sugar levels get too high (hyperglycemia) or too low (hypoglycemia), it can cause serious problems and even death. Because of this, those with T1D are dependent on injections or pumps to survive.

The causes of T1D are not fully known, and there is currently no cure; however, advancing technologies are making it easier to live with T1D.

Monitoring

Those who have had T1D for decades might recall having to pee into a vial and test reagent strips in order to check their blood-sugar levels. Thankfully, this evolved into glucometers, or glucose meters. With a glucometer, those with T1D prick their finger and place a drop on the edge of the test strip, which is connected to the monitor that displays their results. Nowadays, glucometers, much like most T1D tech, can be Bluetooth enabled and sync with a smartphone.

From there, scientists have developed the continuous glucose monitor (CGM) so that those with T1D can monitor their blood sugar 24/7. All you need to do is insert a small sensor under the skin. The sensor then measures glucose levels every few minutes, and that information can then be transmitted to smartphones, computers and even smart watches.

Monitoring blood-sugar levels is vital for those with T1D, particularly because it helps them stay more aware of their body, know what to do and even what to expect, but they also have to actively control those levels by injecting insulin. Think of a monitor as the "check engine" light. It can tell you that there may be a problem, but it won't fix it for you. To fix it, you would need an injection or a pump.

Pumps and artificial pancreas

The development of insulin pumps has made a huge impact on the lives of those with T1D and parents of children with T1D by making it easier to manage their blood-sugar levels. 50 years ago, the prototype of the insulin pump was so large, it had to be a backpack, but with today's technology, it is about the size of a smartphone. The pump is worn on the outside of the body, and it delivers insulin through a tube which is placed under the skin. Insulin pumps mimic the way a pancreas works by sending out small doses of insulin that are short acting. A pump can also be manipulated depending on each person's needs. For example, you can press a button to deliver a dose with meals and snacks, you can remove it or reduce it when active and it can be programmed to deliver more at certain times or suspend delivery if necessary.

One of the most recent and trending developments in T1D research is the artificial pancreas, or more formally referred to as the automated insulin delivery (AID) systems. Essentially, the artificial pancreas is an insulin pump that works with a CGM. The CGM notifies the insulin pump of your blood-sugar reading, which acts accordingly to restore your blood sugar to the target level. The artificial pancreas allows those with T1D to be even more hands off, as it does essentially everything: It continuously monitors blood-sugar levels, calculates how much insulin you would need, which can be done through smart devices, and automatically delivers insulin through the pump.

Living with T1D is a 24/7/365 battle; however, the advances in technology make it easier and safer to live with the disease. Organizations like JDRF play a huge role in investing in research, advocating for government support and more.

November was National Diabetes Awareness Month, and this year is particularly special for JDRF, as it is the 50th year of the organization. JDRF was founded in 1970 by two moms. The community grew to include scientists, lobbyists, celebrities and children—all determined to improve lives and find cures.

Bound by a will stronger than the disease, this year during National Diabetes Awareness Month (NDAM), JDRF celebrates "The Power of Us." We are reflecting on the power of our community and reminding ourselves and the public of how far we've come in the fight against T1D.


------

Rick Byrd is the executive director of the JDRF Southern Texas Chapter.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Rice launches 'brain economy' initiative at World Economic Forum

brain health

Rice University has launched an initiative that will position “brain capital” as a key asset in the 21st century.

Rice rolled out the Global Brain Economy Initiative on Jan. 21 at the World Economic Forum in Davos, Switzerland.

“This initiative positions brain capital, or brain health and brain skills, at the forefront of global economic development, particularly in the age of artificial intelligence,” the university said in a news release.

The Rice-based initiative, whose partners are the University of Texas Medical Branch in Galveston and the Davos Alzheimer’s Collaborative, aligns with a recent World Economic Forum and McKinsey Health Institute report titled “The Human Advantage: Stronger Brains in the Age of AI,” co-authored by Rice researcher Harris Eyre. Eyre is leading the initiative.

“With an aging population and the rapid transformation of work and society driven by AI, the urgency has never been greater to focus on brain health and build adaptable human skills—both to support people and communities and to ensure long-term economic stability,” says Amy Dittmar, a Rice provost and executive vice president for academic affairs.

This initiative works closely with the recently launched Rice Brain Institute.

In its first year, the initiative will establish a global brain research agenda, piloting brain economy strategies in certain regions, and introducing a framework to guide financial backers and leaders. It will also advocate for public policies tied to the brain economy.

The report from the McKinsey Health Institute and World Economic Forum estimates that advancements in brain health could generate $6.2 trillion in economic gains by 2050.

“Stronger brains build stronger societies,” Eyre says. “When we invest in brain health and brain skills, we contribute to long-term growth, resilience, and shared prosperity.”