With FDA approval, Houston health tech company prepares nationwide deployment

Houston innovators podcast episode 232

Jessica Traver Ingram, CEO and co-founder of IntuiTap, joins the Houston Innovators Podcast to share her company's latest milestone. Photo courtesy of IntuiTap

Jessica Traver Ingram has been captivated by the intersection of physics and health care for most of her life, and that passion led her to contributing to the establishment of the Texas Medical Center's Biodesign Fellowship. After helping make the program a reality, Traver Ingram then participated in it as a fellow.

The program selects fellows and then lets them explore the TMC's member institutions to find ways to innovate within unmet clinical needs, and the inefficiency and challenges with placing epidurals and lumbar punctures caught Traver Ingram and her cohort's eye. The process relies completely on the health care practitioner's ability to feel the spine with their fingers to make the injection.

"We kept watching the inefficiencies of these procedures, and everyone was like, 'you're right, we don't really know why we do it this way,'" Traver Ingram says on the Houston Innovators Podcast. "It's really cool to be outsiders watching and observing, because you just see things other people don't see — and that's in any industry."

With that, IntuiTap was born. Traver Ingram describes its tool, the VerTouch, as a "stud finder for the spine." After years of growing the company, she can also now call it FDA-approved.


"FDA clearance allows us to market the device in the United States, so we are entering the commercial launch stage of the company, which is really exciting," Traver Ingram says. "We plan to have these devices available in hospitals across the country within the year."

First up is what Traver Ingram calls a soft launch. The company is picking five institutions that want to be centers of excellence for the device and doing trial launches there before entering into a greater, nationwide rollout.

"It's just crazy that what started as just an idea on paper is now FDA approved and commercially ready and something that patients can see in hospitals this year," Traver Ingram says.

And the timing is important, she explains, adding that where the health care industry seems to be at as a whole is primed for innovation like IntuiTap.

"There's a lot of really exciting developments happening in health care right now," Traver Ingram says. "I feel like we're really at a tipping point for innovation and we're going to see some really big leaps in the next couple of years.

"One of the exciting trends I think that we're seeing is a shift away from blind procedures or procedures that are seen as an art requiring a significant amount of skills toward more science-based, safer, consistent, and repeatable procedures," she continues. "We fit really well into that category, so I'm glad that we're seeing that shift."

NeuraStasis, which originated out of the TMC Biodesign program, is launching its latest study in Houston. Photo via Getty Images

Health tech startup launches Houston study improve stroke patients recovery

now enrolling

A Houston-born company is enrolling patients in a study to test the efficacy of nerve stimulation to improve outcomes for stroke survivors.

Dr. Kirt Gill and Joe Upchurch founded NeuraStasis in 2021 as part of the TMC Biodesign fellowship program.

“The idea for the company manifested during that year because both Joe and I had experiences with stroke survivors in our own lives,” Gill tells InnovationMap. It began for Gill when his former college roommate had a stroke in his twenties.

“It’s a very unpredictable, sudden disease with ramifications not just for my best friend but for everyone in his life. I saw what it did to his family and caregivers and it's one of those things that doesn't have as many solutions for people to continue recovery and to prevent damage and that's an area that I wanted to focus myself on in my career,” Gill explains.

Gill and Upchurch arrived at the trigeminal and vagus nerves as a potential key to helping stroke patients. Gill says that there is a growing amount of academic literature that talks about the efficacy of stimulating those nerves. The co-founders met Dr. Sean Savitz, the director of the UTHealth Institute for Stroke and Cerebrovascular Diseases, during their fellowship. He is now their principal investigator for their clinical feasibility study, located at his facility.

The treatment is targeted for patients who have suffered an ischemic stroke, meaning that it’s caused by a blockage of blood flow to the brain.

“Rehabilitation after a stroke is intended to help the brain develop new networks to compensate for permanently damaged areas,” Gill says. “But the recovery process typically slows to essentially a standstill or plateau by three to six months after that stroke. The result is that the majority of stroke survivors, around 7.6 million in the US alone, live with a form of disability that prevents complete independence afterwards.”

NeuraStasis’ technology is intended to help patients who are past that window. They accomplish that with a non-invasive brain-stimulation device that targets the trigeminal and vagus nerves.

“Think of it kind of like a wearable headset that enables stimulation to be delivered, paired to survivors going through rehabilitation action. So the goal here is to help reinforce and rewire networks as they're performing specific tasks that they're looking to improve upon,” Gill explains.

The study, which hopes to enroll around 25 subjects, is intended to help people with residual arm and hand deficits six months or more after their ischemic stroke. The patients enrolled will receive nerve stimulation three times a week for six weeks. It’s in this window that Gill says he hopes to see meaningful improvement in patients’ upper extremity deficits.

Though NeuraStasis currently boasts just its two co-founders as full-time employees, the company is seeing healthy growth. It was selected for a $1.1 million award from the National Institutes of Health through its Blueprint MedTech program. The award was funded by the National Institute of Neurological Disorders and Stroke. The funding furthers NeuraStasis’ work for two years, and supports product development for work on acute stroke and for another product that will aid in emergency situations.

Gill says that he believes “Houston has been tailor-made for medical healthcare-focused innovation.”

NeuraStasis, he continues, has benefited greatly from its advisors and mentors from throughout the TMC, as well as the engineering talent from Rice, University of Houston and Texas A&M. And the entrepreneur says that he hopes that Houston will benefit as much from NeuraStasis’ technology as the company has from its hometown.

“I know that there are people within the community that could benefit from our device,” he says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.

FAA demands investigation into SpaceX's out-of-control Starship flight

Out of this world

The Federal Aviation Administration is demanding an accident investigation into the out-of-control Starship flight by SpaceX on May 27.

Tuesday's test flight from Texas lasted longer than the previous two failed demos of the world's biggest and most powerful rocket, which ended in flames over the Atlantic. The latest spacecraft made it halfway around the world to the Indian Ocean, but not before going into a spin and breaking apart.

The FAA said Friday that no injuries or public damage were reported.

The first-stage booster — recycled from an earlier flight — also burst apart while descending over the Gulf of Mexico. But that was the result of deliberately extreme testing approved by the FAA in advance.

All wreckage from both sections of the 403-foot (123-meter) rocket came down within the designated hazard zones, according to the FAA.

The FAA will oversee SpaceX's investigation, which is required before another Starship can launch.

CEO Elon Musk said he wants to pick up the pace of Starship test flights, with the ultimate goal of launching them to Mars. NASA needs Starship as the means of landing astronauts on the moon in the next few years.

TMC med-tech company closes $2.5M series A, plans expansion

fresh funding

Insight Surgery, a United Kingdom-based startup that specializes in surgical technology, has raised $2.5 million in a series A round led by New York City-based life sciences investor Nodenza Venture Partners. The company launched its U.S. business in 2023 with the opening of a cleanroom manufacturing facility at Houston’s Texas Medical Center.

The startup says the investment comes on the heels of the U.S. Food and Drug Administration (FDA) granting clearance to the company’s surgical guides for orthopedic surgery. Insight says the fresh capital will support its U.S. expansion, including one new manufacturing facility at an East Coast hospital and another at a West Coast hospital.

Insight says the investment “will provide surgeons with rapid access to sophisticated tools that improve patient outcomes, reduce risk, and expedite recovery.”

Insight’s proprietary digital platform, EmbedMed, digitizes the surgical planning process and allows the rapid design and manufacturing of patient-specific guides for orthopedic surgery.

“Our mission is to make advanced surgical planning tools accessible and scalable across the U.S. healthcare system,” Insight CEO Henry Pinchbeck said in a news release. “This investment allows us to accelerate our plan to enable every orthopedic surgeon in the U.S. to have easy access to personalized surgical devices within surgically meaningful timelines.”

Ross Morton, managing Partner at Nodenza, says Insight’s “disruptive” technology may enable the company to become “the leader in the personalized surgery market.”

The startup recently entered a strategic partnership with Ricoh USA, a provider of information management and digital services for businesses. It also has forged partnerships with the Hospital for Special Surgery in New York City, University of Chicago Medicine, University of Florida Health and UAB Medicine in Birmingham, Alabama.