The Houston Harris Heat Action Team is working to locate Houston's hottest spots. Screenshot via h3at.org

On August 7, when the thermometer reached a high of 93 degrees, a squad of 85 temperature detectives fanned out across Houston and Harris County. Their objective: Map the area's urban heat.

Organizers of the one-day endeavor pinpointed 320 square miles of Houston and Harrison County for collection of data about urban heat. Hardware attached to cars and bicycles traveling on predetermined routes took temperature and humidity readings during three one-hour periods: 6-7 am, 3-4 pm, and 7-8 pm.

The devices tracked temperature changes throughout the day in places featuring various characteristics, such as lots of green space, pavement or buildings. In all, the "street scientist" volunteers measured temperature and humidity in 32 heat-mapping pockets covering 10 square miles each.

The heat-mapping initiative was coordinated by the Houston Harris Heat Action Team, a collaboration of the Nature Conservancy of Texas, Houston Advanced Research Center, City of Houston, and Harris County Public Health. The team's corporate partners are Lowe's and Shell.

The team says urban areas are especially prone to high temperatures due to a combination of hard surfaces (buildings and roads), limited vegetation (such as trees), and heat generators like cars and factories.

"This problem, known as the urban heat island effect, can create issues for human health, infrastructure, and quality of life. Understanding how temperatures vary based on qualities of the natural and built landscape can inform how we reduce the impacts of rising summer temperatures in our communities," the team says.

Marissa Aho, the city of Houston's chief resilience officer, says the heat-mapping data will be available this fall through an open-source platform. Aho offers a heat-mapping project in Honolulu as an example of how Houston's data will be presented.

The Resilient Houston plan, released in February by Houston Mayor Sylvester Turner, called for a heat-mapping effort like the one carried out August 7 and outlined ways to reduce urban heat, such as planting 4.6 million new native trees over the next 10 years and retrofitting roofs to decrease heat absorption. Aho says the heat-mapping data will bolster initiatives to lessen the "urban heat island" effect.

"Houstonians do not prepare for heat like we prepare for hurricanes, but we should," Turner says in a release. "Houston is getting hotter, and we need science and data to help identify where the greatest impacts are so we can keep Houstonians safer and our city more resilient."

According to the U.S. Department of Homeland Security, extreme heat — defined as at least two consecutive days with temperatures above 90 degrees — ranks as the country's No. 1 cause of weather-related deaths. A 2017 study published by the National Resources Defense Council found the Houston area averaged 18 dangerously hot summer days per year from 1975 to 2010. Without any action to combat urban heat, Houston's annual number of days hit by dangerous summer heat could rise to 80 from 2046 through 2055 and 90 from 2091 to 2100.

Urban heat "leaves vulnerable communities susceptible to the dangers of stress and stroke, leads to higher ozone levels, and reduces the quality of life for all residents of the region — creating especially dangerous conditions for communities already striving to overcome historic obstacles around access and resources, as well as those who engage in outdoor work and recreation," according to the release from the Houston Harris Heat Action Team.

Aside from the human toll, urban heat exacts a financial toll. A 2017 study by researchers in the United Kingdom, Mexico, and the Netherlands indicates overheated cities face climate-change costs at least twice as high as the rest of the world due to urban heat islands.

Organizers of Houston's heat-mapping project note that last August was the second warmest on record in the city, with seven consecutive days when the temperature topped 100 degrees. As climate change takes hold and Houston continues to expand, "these heat-related challenges continue to be exacerbated," the release states.

Jaime González, Houston Healthy Cities Program director at the Nature Conservancy, says the heat-mapping data gathered August 7 will help determine where to plant trees, install "green" roofs, and promote other heat-mitigation tactics.

"We have a number of nature-first solutions in our toolkit that can help us cool our cities, but the first step in combating climate- and infrastructure-caused urban heat is to know exactly where to start," González says.

Houston was one of 13 U.S. communities chosen to participate in this summer's Heat Watch program, led by Portland, Oregon-based environmental services company CAPA Strategies LLC and backed by the National Oceanic and Atmospheric Administration (NOAA).

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics co. unveils new robot that can handle extreme temperatures

Hot New Robot

Houston- and Boston-based Square Robot Inc.'s newest tank inspection robot is commercially available and certified to operate at extreme temperatures.

The new robot, known as the SR-3HT, can operate from 14°F to 131°F, representing a broader temperature range than previous models in the company's portfolio. According to the company, its previous temperature range reached 32°F to 104°F.

The new robot has received the NEC/CEC Class I Division 2 (C1D2) certification from FM Approvals, allowing it to operate safely in hazardous locations and to perform on-stream inspections of aboveground storage tanks containing products stored at elevated temperatures.

“Our engineering team developed the SR-3HT in response to significant client demand in both the U.S. and international markets. We frequently encounter higher temperatures due to both elevated process temperatures and high ambient temperatures, especially in the hotter regions of the world, such as the Middle East," David Lamont, CEO of Square Robot, said in a news release. "The SR-3HT employs both active and passive cooling technology, greatly expanding our operating envelope. A great job done (again) by our engineers delivering world-leading technology in record time.”

The company's SR-3 submersible robot and Side Launcher received certifications earlier this year. They became commercially available in 2023, after completing initial milestone testing in partnership with ExxonMobil, according to Square Robot.

The company closed a $13 million series B round in December, which it said it would put toward international expansion in Europe and the Middle East.

Square Robot launched its Houston office in 2019. Its autonomous, submersible robots are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments.

---

This article originally appeared on EnergyCapitalHTX.com.

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.