Texas is listed as the third-most vulnerable state when it comes to robots replacing the workforce in manufacturing. Houston houses a third of the manufacturing jobs in the state. Thossaphol Somsri/Getty Images

If a new forecast comes true, Houston's manufacturing sector could take an especially hard hit from the upturn in the use of robots.

In a new report, Oxford Economics, a forecasting and analysis firm based in the United Kingdom, ranks Texas as the third most vulnerable state when it comes to human workers in manufacturing being replaced by robotic labor. The report gives no estimate of how many manufacturing jobs Texas might lose to robots, but around the world, robots could boot 20 million jobs by 2030.

About one-third of Texas' manufacturers operate in the Houston metro area, meaning the robot revolution carries significant weight for the regional economy.

In 2017, manufacturing accounted for $82.6 billion, or nearly 17 percent, of the Houston area's economic output, the U.S. Bureau of Economic Analysis says. Manufacturing employment in the region averaged 219,160 jobs in 2017, with total wages of nearly $4.8 billion.

Among the top manufacturing segments in the region are fabricated metals (22 percent of all manufacturing jobs), machinery (19 percent) and chemicals (17.5 percent), according to the Greater Houston Partnership. Between 2012 and 2017, manufacturing employment in the Houston area slipped by 9.8 percent, going from 243,011 workers to 219,160 workers.

However, a recent report from the Economic Innovation Group shows Harris County netted more manufacturing jobs (11,592) from December 2016 to December 2018 than any other county in the U.S.

According to the National Association of Manufacturers, the manufacturing sector in Texas created more than $226 billion in economic output in 2017. Last year, about 880,900 people held manufacturing jobs in Texas; that's more than 7 percent of the statewide workforce.

In declaring that Texas sits among the states most susceptible to job losses due to robotics, Oxford Economics took into account factors such as:

  • Dependence on manufacturing jobs.
  • Current use of robots in manufacturing.
  • Productivity of the manufacturing workforce.

Based on those criteria, Texas received a robot vulnerability score of 0.50. The top two states, Oregon and Louisiana, each got a score of 0.58, with the higher number meaning greater vulnerability.

The report cites three reasons for the ascent of robots in manufacturing:

  • Robots are becoming cheaper than humans.
  • Robots are becoming more sophisticated.
  • Demand for manufactured goods is rising.

"The rise of the robots will boost productivity and economic growth. It will lead, too, to the creation of new jobs in yet-to-exist industries, in a process of 'creative destruction,'" according to the Oxford Economics report. "But existing business models across many sectors will be seriously disrupted. And tens of millions of existing jobs will be lost, with human workers displaced by robots at an increasing rate as robots become steadily more sophisticated."

Tony Bennett, president and CEO of the Texas Association of Manufacturers, says the Oxford Economics report isn't all gloom and doom.

"Robotics and mechanization in our advanced manufacturing industries will continue to displace some general-labor jobs. However, this change is also ushering in a new set of higher-skilled jobs that are being created to engineer, build, and service these sophisticated machines," Bennett says. "The state of Texas must continue striving to increase educational opportunities in engineering, math, science, and career and technical programs to meet the complex manufacturing processes of the future."

Houston Community College's Advanced Manufacturing Center for Excellence is among the organizations in the Houston area that are preparing workers for jobs in robotics and other high-demand, tech-driven aspects of manufacturing.

"Innovation is Houston's bedrock," Houston Mayor Sylvester Turner said in 2017. "The city would have never thrived without the innovations it took to build the Ship Channel and the innovating that goes on every day in the energy industry, at the Texas Medical Center, at the Johnson Space Center and in the manufacturing sector. Now, Houston is poised to take its place at the forefront of the American future in technology."

Earlier this year, another study found a similarly daunting result. Almost half of Houston's workplace tasks are susceptible to automation, according to a new report from the Brookings Institution's Metropolitan Policy Program. Of 100 metros analyzed, Houston ranks 31st among the country's 100 biggest metros, with 46.3 percent of work tasks susceptible to automation.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”