The Welch Foundation has awarded funding through two of its newest grant programs. Photo via Getty Images.

Houston-based The Welch Foundation has issued $700,000 in additional funding to support chemical research through two of its newest grant programs.

The foundation has named the recipients of its Welch eXperimental (WelchX) Collaboration Retreat and Pilot Grants and the Welch Postdoctoral Fellows of the Life Sciences Research Foundation Grants.

The WelchX grants were awarded to teams of two Texas researchers who presented "innovative and collaborative ideas" addressing challenges in the clean energy space, according to the foundation.

Researchers from Texas universities gathered in Houston earlier this summer to discuss the theme “Chemical Research for Grand Challenges." They then paired off into nine teams and submitted proposals for the $100,000 pilot grants. The seven selected teams, several with ties to Houston, and their research topics include:

  • Yimo Han, Rice University, and Yuanyue Liu, The University of Texas at Austin, “Stabilizing Copper Electrocatalysts for CO2 Conversion”
  • Ognjen Miljanic, University of Houston, and Indrajit Srivastava, Texas Tech University, “Ping-Pong' Afterglow Luminescence in Self-Assembled Molecular Cubes”
  • Raúl Hernández Sánchez, Rice University, and Andy Thomas, Texas A&M University, “Accelerating Magnetic Resonance Imaging Contrast Agent Discovery via Rapid Injection NMR: Improving the Detection of Lithium for Disease Diagnostics”
  • Benjamin Janesko, Texas Christian University, and MD Masud Rana, Lamar University, “Cyber Twin Chemical Ensembles for Near-Infrared-Emitting Graphene Quantum Dot Therapeutics”
  • Ivan Korendovych, Baylor University, and Dino Villagrán, The University of Texas at El Paso, “Selective Bio-Inspired Electrochemical Probes for PFAS Analysis and Degradation”
  • Samantha Kristufek, Texas Tech University, and Kayla Green, Texas Christian University, “CIRCUIT: Critical Ion Recovery using Conductive and Ultrafiltration Intelligent Technology”
  • Fang Xu, The University of Texas at San Antonio, and Hong Wang, University of North Texas, “Visualize Molecular Adsorption on Supported Ni-porphyrin Model Catalysts via Substitute Effect”

The Welch Postdoctoral Fellows of the Life Sciences Research Foundation provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas.

The foundation previously announced that it would name fellows from Rice University and Baylor University who would receive $100,000 annually for three years. This year's recipients and their research topics include:

  • Teng Yuan, Rice University, “Unlocking New Chemistry of Nonheme Iron Enzymes for α-Amino Acids and γ-Lactones Synthesis”
  • Katelyn Baumler, Baylor University, "Crystal Growth of Ln2Fe4Sb5 Phases Toward the Study of Novel Quantum Properties”

“As these programs become more established, it is thrilling to see the new research our awardees are exploring,” Adam Kuspa, president of The Welch Foundation, said in a news release. “The Foundation is very pleased by the applications that we continue to receive describing exciting new research projects to advance chemical research.”

This additional funding comes on the heels of the foundation doling out $27 million for chemical research, equipment and postdoctoral fellowships earlier this summer. The foundation made 85 grants to faculty at 16 Texas institutions at the time. Read more here.

The home of the Rice Owls is on top once again. Photo via Rice University

Rice University named top college in U.S. News' new rankings for 2025

top of class

Houston's own "Ivy League of the South" has come out on top as one of the best universities in the nation for 2025, according to U.S. News and World Report's just-released list of the Best Colleges for 2025.

Rice University claimed No. 1 in Texas, and ranked No. 18 nationally in a one-spot slip from last year's ranking. The private institution has a 98 percent first-year retention rate, and an "actual" graduation rate of 96 percent. Rice costs $60,709 in tuition and fees for students each year, and according to the school's profile, it has an acceptance rate of eight percent.

In April, Rice's Jesse H. Jones Graduate School of Business ranked No. 2 in U.S. News' ranking of the best graduate schools in Texas, with its entrepreneurship program tying for No. 8 nationally, and the part-time MBA program ranking No. 15 overall. Those rankings may change in the next few years once the school finishes its brand new facility for the business school.

Rice also fared similarly in Niche'slist of best colleges, in which it ranked No. 15 nationally. Forbes ranked the university No. 9 nationwide in its list of best colleges for the 2024-2025 school year, and Rice was bestowed an "Ivy League" status in Forbes' recent report on top public and private schools that churn out top graduates.

“We are delighted to see Rice University recognized as one of America’s producers of great talent. Rice has been a recruiting destination for employers for many years and that is because Rice students are adaptable, curious, bright, and are solution oriented,” Nicole Van Den Heuvel, executive director of the Center for Career Development, says in a news release from Rice.

In a glowing review of the university, one former business student said studying at Rice was a "transformative experience."

"Rice is the perfect blend of rigorous academics, strong athletics, and a nurturing and engaging social life," the reviewer wrote. "It's quite idyllic. Rice is known as a STEM school, but it has distinguished programs in humanities, social sciences, music and architecture too. Professors are top scholars in their fields and will know you by name. Students are well prepared academically, but are also collaborative and supportive."

Right behind Rice in the rankings is The University of Texas at Austin, which ranked No. 2 in Texas and No. 30 nationally. Just behind UT Austin is College Station's Texas A&M University, which placed No. 3 in the Texas rankings and No. 51 nationally.

The University of Houston maintained its No. 8 rank in the statewide comparison, but fell 11 spots down into No. 144 in the national rankings.

The University of St. Thomas ranked No. 9 in Texas, and moved up seven places to rank No. 209 in the U.S. for 2025.

U.S. News' top 10 best colleges in Texas in 2024 are:

  • No. 1 – Rice University, Houston
  • No. 2 – University of Texas at Austin
  • No. 3 – Texas A&M University, College Station
  • No. 4 – Baylor University, Waco
  • No. 5 – Southern Methodist University, Dallas
  • No. 6 – Texas Christian University, Fort Worth
  • No. 7 – The University of Texas at Dallas, Richardson
  • No. 8 – University of Houston
  • No. 9 – University of St. Thomas, Houston
  • No. 10 – Texas Tech University, Lubbock

The full rankings can be found on usnews.com.

------

This article originally ran on CultureMap.

Houston-based Mainline is providing the tournament software for an unprecedented esports showdown between the Big 12 schools. Jamie McInall/Pexels

Houston esports company to provide software for a first-of-its-kind collegiate tournament

game on

While college football's fate this fall is up in the air thanks to the coronavirus pandemic, the Big 12 Conference is definitely going to face off virtually thanks to esports software developed in Houston.

According to an announcement from the Big 12 Conference and Learfield IMG College, its multimedia rights partner, the tournament has opened for registration for all 10 member schools — Baylor University, Texas Christian University, University of Texas, Texas Tech University, Iowa State University, University of Kansas, Kansas State University, University of Oklahoma, Oklahoma State University, and West Virginia University.

"This is a great opportunity to engage in an emerging space on a Conference-wide level," says Big 12 Commissioner Bob Bowlsby in a news release. "This opportunity is a unique way to provide original content from within a competitive environment during these challenging times. We appreciate the collaborative efforts that have made this first-of-its-kind Big 12 Championship tournament possible."

Houston-based Mainline, an esports software startup, has been selected to provide the tournament software for this unprecedented event, which is set to take place July 13 to 16. Each of the 10 schools will host its own single-elimination qualifying tournament featuring Madden NFL 20. Students have until July 10 to register to compete. Big 12 Now on ESPN+ will air both the schools' finals and the Big 12 Conference Championship tournament. The host of Big 12 This Week, Bill Pollock, will call the tournament.

Not only will Mainline's tournament software enable the competition, but it will allow Learfield IMG College to sell sponsors on esports visibility. Just like the football season, the esports tournaments will promote school branding and an opportunity to connect with student participants.

"It's more important now than ever to provide college students the ability to stay connected and engaged, and our technology can help aggregate the college esports community to help make that happen," says Chris Buckner, Mainline's CEO and founder, in the release. "This will multiply the opportunity, power and fun of esports to college students attending all Big 12 universities and keeps students competing while still practicing social distancing."

Earlier this month, Buckner joined InnovationMap's Houston Innovators Podcast to discuss the opportunities — as well as the challenges — the pandemic posed for his company.

"Everyone is looking for how to get sports, or esports, in front of people because everyone is just missing [sports] so much," Buckner says on the episode. "Our June will pretty much be the best month of our company, and a lot of that is driven by the fact that everyone is looking for a digital solution rather than an in-person solution."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”