The train isn't official yet but now there's a builder in place. Photo courtesy of JR Central

The high-speed train between Houston and Dallas still needs an official sign-off before it happens, but a builder has been hired for when that day comes.

Texas Central, the developers of the train, have signed a $16 billion contract with Webuild, an engineering contractor company based in Milan.

Previously known as Salini Impregilo, Webuild is one of the largest civil engineering contractors in the world. They'll be working with The Lane Construction Corporation, a global leader in engineering and construction, to lead the civil construction team that will build the Texas rail line.

According to a release, Webuild is active in more than 50 countries on five continents, including Australia, Europe, Asia, and the Americas.

The company has built high-speed train projects in Europe, along with more complex transportation projects such as the expansion of the Panama Canal, the Grand Paris Express, and the Anacostia River and Northeast Boundary tunnels in Washington, DC.

They've worked in the U.S. since the 1980s but were able to expand their presence in 2016 by merging with The Lane Construction Corporation, based in Cheshire, Connecticut.

Webuild Group CEO Pietro Salini calls the commission an honor.

"Being part of such a challenging project as leader of the design and construction of the railway is a unique experience that we are extremely proud of," Salini says. "This is a wonderful opportunity to further focus our presence in the U.S., our biggest single market, together with Lane, the company building first class transport infrastructure for the country for the past 130 years."

According to the contract, Webuild will execute all the heavy construction for the project, designing and building 236 miles of the alignment, nearly half of it on viaduct and much of it elevated to reduce impact on neighbors and landowners.

Webuild will also build all maintenance and industrial buildings, train depots, and facilities.

The system Texas Central Railroad has proposed will replicate the Japanese Tokaido Shinkansen high-speed rail system, operated by the Central Japan Railway Company (JRC) which, in its 55+-year history has transported more than 10 billion passengers with zero operational passenger fatalities or accidents.

The 200-mph train will be a 90-minute ride between Houston and Dallas, with a midway stop in the Brazos Valley.

In May, Texas Central signed a $1.6 billion contract with Kiewit Infrastructure South Co. and affiliate Mass. Electric Construction Co. to install the train's core electrical systems.

The project has had pushback from some Texas politicians and landowners along the route, but the Biden administration is very pro rail, with a $2 trillion infrastructure package that includes modernizing public transit (commuter rail, buses, stations) and improving and expand the nation's passenger and freight rail network. He recently restored funding to a project that would connect San Francisco and Los Angeles.

------

This article orignally ran on CultureMap.

The high-speed train now has a new builder onboarded for the project. Photo of the N700 courtesy of © JR Central

The high-speed train planning a Houston-Dallas route now has a builder on board the project

Right on track

The Texas high-speed train that plans to zip between Houston and Dallas still has some obstacles to plow through, but the project now has a builder at least.

Texas Central, the developer of the Texas Bullet Train, has signed a contract with Salini Impregilo, an Italian construction company and one of the largest civil engineering contractors in the world, and its American subsidiary, Lane Construction.

"This agreement brings us one step closer to beginning construction of the civil infrastructure segments of the project," said Texas Central CEO Carlos F. Aguilar, in a release.

The train still can't move forward because it doesn't own all of the land necessary for the route.

But if/when it does get the land, Salini Impregilo will do the following:

  • supply the civil and infrastructure scope, including the design and construction of the viaduct and embankment sections along the entire route
  • install the track system
  • oversee alignment and construction of all buildings and services that will house maintenance and other rail system equipment

Salini-Lane had previously provided front-end engineering and design for the train's civil infrastructure, as well as an analysis of construction costs and schedule estimates.

"Salini-Lane's unmatched track record with rail infrastructure and, very specifically, its world-class high-speed rail expertise across the globe will be central to the completion of America's first end-to-end high-speed rail system," Aguilar says.

Salini's CEO Pietro Salini says in a statement that the company is both thrilled and honored to bring its large-scale railway expertise to the project.

Salini Impregilo is active in more than 50 countries on five continents, with experience building more than 4,000 miles of railway infrastructure around the world. It has built high-speed train projects in Europe and some iconic projects in the world, including the expansion of the Panama Canal.

Although the company has worked in the U.S. since the 1980s, it expanded its presence in 2016 when it merged with The Lane Construction Corporation, a U.S.-based company with almost 130 years of experience in infrastructure work.

The Texas train will be based on Central Japan Railway's Tokaido Shinkansen train system, which is considered the safest mass transportation system in the world.

The system has transported more than 10 billion passengers in 54-plus years, with no fatalities or injuries from operations, and has an impeccable on-time performance record.

It will debut a new train, the Shinkansen N700S, the sixth generation of this train, before the 2020 Olympics.

------

This article originally ran on CultureMap.

This Texas train system is on track to keep operations green, thanks to a Houston-based company. Rendering courtesy of Texas Central

High-speed train hires Houston-based eco company to keep route green

Onboarding

Texas Central, developers of the high-speed train proposed to run between Houston and Dallas, has selected a Houston-based company to oversee the environmental side of the project: Resource Environmental Solutions will help protect and enhance natural ecosystems and the environment throughout construction and operations.

RES will oversee plans to comply with US Army Corps of Engineers' requirements that the project restore, enhance, and preserve wetlands, streams, and environmentally sensitive habitats along the train's route between Houston and North Texas.

According to a release, RES is the largest ecosystem restoration provider in the United States. In the past decade, it has restored more than 58,000 acres of wetlands, enhanced more than 290 miles of streams, and planted more than 14 million restorative trees.

Recent projects include Maurepas Swamp in Louisiana, the Brooks Creek Wetland Mitigation Bank in Bowie County, and the Robinson Fork Stream Mitigation Bank, the largest floodplain restoration project in the northeastern United States.

RES is also working on the Bois d'Arc Lake Mitigation Area, a 16,600-acre reservoir being built in Fannin County to provide water services to 80 communities in North Texas that's the largest permittee-responsible mitigation project in U.S. history. The restoration area encompasses more than 8,500 acres of wetlands, 70 miles of streams, 3,200 acres of native grasslands, and 2,600 acres of non-wetland forests.

RES will help Texas Central meet regulatory requirements for environmental mitigation, collaborating with community leaders to identify local and regional conservation opportunities. The plan includes rebuilding and restoring wetlands and streams in the impacted watersheds, enhancing the viability of sub-watersheds that are close to the route.

Brian Trusty, VP of the Audubon Society, gives a thumbs up, stating that "Audubon believes the project is a win-win opportunity for both Texans and the wildlife in our state."

"Providing large-scale transportation opportunities that work to reduce carbon emissions, while supporting further economic prosperity and connectivity between the Dallas and Houston metro areas, is progressive and forward-looking," Trusty says. "Partnering with RES ensures the project will be done right, and we are thankful to see Texas Central take this step."

The project's scale will allow RES to identify not only isolated pockets along the route that require restoration, but also entire complexes of streams and wetlands suitable for improvement and conservation.

RES will select mitigation sites and designs that collectively improve the ecological functions of broad areas, including some near the Trinity River, Navasota River, Spring Creek, and Cypress Creek.

This environmental work, combined with innovations of an all-electric high-speed train system, will provide the most environmentally friendly travel choice between Houston and North Texas. The train is estimated to remove more than 14,630 cars per day from I-45.

Other ecological benefits:

  • As compared to highway development, for every one mile of high-speed railroad tracks, about 450 acres of farmland will be preserved.
  • The all-electric system will utilize the latest in green technologies, such as regenerative braking systems.
  • Texas will use the newest generation of Shinkansen trains, the N700 Supreme, which consumes seven percent less energy and weighs seven tons less than the previous model. Lighter trains result in less noise, vibration, and impacts on materials and land.
  • The route largely follows existing rights-of-way corridors, resulting in the fewest possible impacts to socioeconomic, natural, physical and cultural environments.

Consistent with Texas Central's commitment to create opportunities for small, minority, women, rural, and veteran-owned businesses, RES has engaged several small businesses to support its work for the project.

RES CEO Elliott Bouillion says in a release that it's possible to achieve both "environmental sustainability and advanced infrastructure."

"Texas high-speed train is an excellent example of how a modern, green infrastructure approach can be harnessed for both ecological and economic benefits," he says.

------

This story originally ran on CultureMap.

The high-speed train is chugging along. Rendering courtesy of Texas Central

Houston-to-Dallas high-speed train hires major international operator

All aboard

The high-speed railroad from Houston to Dallas has acquired a key new player that will run day-to-day operations.

Renfe, an international railway company based in Spain, has been hired by Texas Central, the project developers, as the train's operating partner. The selection of Renfe as an operating partner marks another major step forward for the Houston-to-North Texas high-speed railroad.

Texas Central CEO Carlos Aguilar says in a statement that Renfe was chosen after a review of the best railroad operators in the world.

"Renfe has established a reputation for excellence in railroad operation in Spain and across the world, and we welcome them aboard," Aguilar says. "With their decades of expertise, they were a natural fit to join our other partners. Having the operator, the design build, and technology teams all on board and able to collaborate will ensure all aspects of the railroad are integrated and efficient."

A release calls Renfe "one of the world's most significant railways operators," running 5,000 trains daily on 7,500 miles of track. The company is integral to the transport system in its home base of Spain, handling more than 487 million passengers and 19.6 million tons of freight moved in 2017.

Renfe, in partnership with Adif, which manages Spanish railway infrastructure, will be responsible for running the trains; maintaining system components, such as engines, signals, and other equipment; and overseeing ticketing, passenger loyalty programs, and other services.

It will also provide technical advice on the design and construction of the Texas train and assist in the further development of Texas Central's operation and maintenance plans, preparing the railroad for passenger service.

Renfe is one of the biggest companies in Spain, employing nearly 14,000 people and recording revenues of 3.6 billion euros in 2017. Its high-speed systems were used by more than 36 million passengers in 2017. In March, Renfe announced that it had posted a net profit of 70 million euros in 2017, thanks in part to a jump in the number of its high-speed passengers, chalking up five consecutive years of growth.

Renfe president Isaías Táboas says the deal is a boon for Texas and for the Spanish railway industry.

"Texas Central represents a large high-speed train project in a country with high-growth potential, for which the Spanish experience will be of great help," he says. "Both Renfe Operadora and Adif have accumulated years and miles of high-speed railway development with professional teams, extensive experience, and specialized knowledge. We are committed to the success of Texas Central in improving the mobility of Texans and others in the U.S."

The agreement comes about a week after Texas Central engaged multinational firm Salini Impregilo ­– operating in the U.S. market with The Lane Construction Corporation – to lead the civil construction consortium that will build the passenger line, including viaducts, embankments, and drainage.

Spain's first high-speed line between Madrid and Seville was dedicated in 1986 and Renfe's first high-speed service connected the cities in 1992.

Its second high-speed line, from Madrid to Barcelona, was completed in 2007. Renfe also operates high-speed service from Barcelona to Paris, Lyon, and Toulouse in France. Among other major international projects, Renfe operates the recently opened high-speed train between Mecca and Medina, in Saudi Arabia.

The 200-mph train will link Houston and Dallas in 90 minutes, with a midway stop in the Brazos Valley.

The Texas train will be based on the latest generation of Central Japan Railway's Tokaido Shinkansen train system, the world's safest mass transportation system. It has operated for more than 54 years with a perfect record of zero passenger fatalities or injuries from operations, and an impeccable on-time performance record.

Texas Central and its partners are refining and updating construction planning and sequencing, guided by the Federal Railroad Administration's recently released draft environmental impact statement. The FRA now is working on a final environmental review that will help determine the project's timeline and final route.

---

This story originally appeared on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston leader on building inclusive communities through innovation

Guest Column

Innovation is often celebrated for speed or curiosity, but genuine progress is about inclusion and expanding the populations that benefit from new technologies.

For example, at Yale University, nursing students are now utilizing a hyper-realistic patient mannequin with Down syndrome, which not only mimics appearance but also fosters both empathy and competence in medical professionals who will treat people of all abilities. Tools like this remind us that innovation is not only about what is new, but also about how we include everyone in progress.

Inclusive Technology: What It Means

Inclusive technology design begins with diverse users in mind, including people living with disabilities such as blindness, hearing loss, or limb loss. Additionally, neurodiverse learners and those with varied learning styles benefit from inclusive technology. The purpose is to create tools that serve everyone in their homes, classrooms, workplaces, and public spaces. Inclusive technology is not only about empathy, but also equity. Innovation bridges gaps and extends access to all people.

National and Local Innovations Advancing Inclusion

Across the country, inclusive technology is transforming access for individuals with varying abilities. Robotics adapted for visually impaired students, audio-virtual reality labs for immersive learning, and AI-based platforms that personalize lessons for students are helping students engage in ways traditional tools cannot. These innovations are not just technical; instead, they are also deeply human, designed to expand access and opportunity for every learner.

Locally, Houston-based organizations demonstrate how inclusive tech can be paired with supportive programs to amplify impact:

  • BridgingApps, a program of Easter Seals of Greater Houston, provides assistive-tech labs and mobile devices for children and adults with disabilities, helping students communicate, learn, and connect in ways they may not have thought possible before.
  • MADE Houston creates adaptive classroom environments for twice-exceptional learners (gifted students with learning differences), ensuring that both their strengths and challenges are incorporated in the curriculum and class experiences.

Both programs partner with Camp For All to provide barrier-free camp experiences to their students.

Innovative technology has the power to change student outcomes and improve the quality of life. Reports such as Inclusive Technology in a 21st Century Learning System show that students with disabilities who have access to these tools are two to three times more likely to graduate from high school than those without.

Complementing these technology-driven advances are experiential programs that create community and empowering experiences.

Camp For All, for example, offers medically safe and adaptive camp experiences for children and adults with challenging illnesses, disabilities, or special needs. Camp For All demonstrates how barrier-free environments, combined with opportunities to explore and try new activities, foster confidence and resilience in campers, such as those who benefit from Easter Seals of Greater Houston and MADE Houston camps.

Why This Matters

When tools and technologies are designed to include everyone, the impact has the potential to impact all people. Individuals with physical, sensory, or learning differences gain confidence and access to opportunities, which leads to more diverse workforces and stronger communities.

Technology, educational tools, and thoughtfully designed programs can reduce barriers, improve academic outcomes, and help prepare individuals for future employment and independent living. Conversely, failing to design inclusively can further entrench inequities related to race, income, and abilities.

For context, while the national graduation rate for students with disabilities has risen to 74%, it still lags behind the 88% rate for peers without disabilities. Technology and inclusive programs help bridge this gap, ensuring that not only more students graduate, but that individuals with disabilities also are better prepared to access higher education, participate fully in the workforce, and engage in social and civic life.

Inclusive tools, such as accessible transportation services, audible pedestrian signals, braille ballots for voting, and short-term device loan programs like TTAP, expand opportunities and promote equitable participation across all aspects of society.

Additionally, research shows that early exposure and inclusion of those living with disabilities, such as in classrooms, community spaces, and club activities, fosters a greater acceptance of differences and proclivity toward inclusive attitudes as children mature. When we begin focusing on acceptance and innovative solutions for all people from the very beginning, our communities are stronger and we increase access to participation for all.

Challenges, Opportunities, and Ripple Effects

Despite progress, obstacles to scaling inclusive technology remain. Many families and schools cannot afford high-end assistive devices, and tools are often developed without input from the users who will rely on them the most.

Although grants and pilot programs exist, systemic funding and support are still limited. Educators, healthcare providers, and city planners also require training and guidance to effectively implement these tools. Overcoming these challenges requires coordinated efforts among technology companies, educators, nonprofits, policymakers, and the communities they serve.

Houston’s rich mix of innovation, research institutions, and nonprofit networks makes it an ideal testing ground for inclusive technology, and we are seeing more advancements daily. Schools and early learning centers are piloting innovative tools, including adaptive learning software, interactive robotics, music therapy, and word prediction programs.

At the same time, medical and therapy programs use simulation labs and telehealth tools to improve treatment for children and adults with disabilities. Civic and public spaces are also becoming more accessible through smart city initiatives such as wayfinding apps, inclusive playgrounds, and sensory-friendly public areas. These examples demonstrate that inclusive technology is about creating meaningful opportunities for everyone, regardless of ability, background, or resources.

When inclusion is prioritized, the benefits extend far beyond individual users. Educational outcomes improve as more students meet learning goals and graduate successfully. Workforce readiness increases as a broader range of skills and abilities enters the labor market. Community equity grows as individuals from underserved communities gain access to tools and experiences that were previously inaccessible.

Increasing participation for students and individuals translates into stronger local and state economies. At its core, inclusive technology creates equity and resilience at both the individual and community level.

Moving Forward

Designing with empathy, investing in equitable access, and acting with urgency are essential to building communities where everyone has the opportunity to contribute. Houston, with its combination of medical research institutions, ed-tech startups, aerospace leadership, nonprofit networks, and pilot programs, is uniquely positioned to lead the nation in inclusive innovation.

By prioritizing technology and programs that serve all learners, the city can demonstrate that meaningful progress is measured not by speed or novelty, but by the number of people who benefit from it. When cities, organizations, and communities commit to inclusive design, they build stronger and more equitable places where everyone benefits and thrives.

---

Pat Prior Sorrells is president and CEO of Camp For All, a Texas-based nonprofit organization. Located in Burton, Texas, the 206-acre Camp For All site was designed with no barriers for children and adults with special needs to experience the joy of camping and nature. Camp For All collaborates with more than 65 nonprofit organizations across the Greater Houston area and beyond to enable thousands of campers and their families to discover life each year. She speaks regularly on the need for inclusive design in public spaces.

7 innovative startups that are leading the energy transition in Houston

meet the finalists

Houston has long been touted as the energy capital of the world, and it's now it's also a leading player in the energy transition — home to numerous startups and innovators working toward a cleaner future.

As part of the 2025 Houston Innovation Awards, our Energy Transition Business category honors innovative startups that are providing solution within renewables, climatetech, clean energy, alternative materials, circular economy, and more.

Seven energy transition companies have been named finalists for the 2025 award. They range from a spinoff stimulating subsurface hydrogen from end-of-life oil fields to a company converting prickly pear cactus biogas into energy.

Read more about these climatetech businesses, their founders, and their green initiatives below. Then join us at the Houston Innovation Awards on Nov. 13 at Greentown Labs, when the winner will be unveiled at our live awards ceremony.

Tickets are now on sale for this exclusive event celebrating all things Houston Innovation.

Anning Corporation

Clean energy company Anning Corporation is working to develop geologic hydrogen, a natural carbon-free fuel, using its proprietary stimulation approaches and advanced exploration modeling. The company said that geologic hydrogen has the potential to be the lowest-cost source of reliable baseload electricity in the U.S.

The company was founded by CEO Sophie Broun in 2024 and is a member of Greentown Labs. Last month, it also announced that it was chosen to participate in Breakthrough Energy’s prestigious Fellows Program. Anning raised a pre-seed round this year and is currently raising a $6 million seed round.

Capwell Services

Houston-based methane capture company Capwell Services works to eliminate vented oil and gas emissions economically for operators. According to the company, methane emissions are vented from most oil and gas facilities due to safety protocols, and operators are not able to capture the gas cost-effectively, leading operators to emit more than 14 million metric tons of methane per year in the U.S. and Canada. Founded in 2022, Capwell specializes in low and intermittent flow vents for methane capture.

The company began as a University of Pennsylvania senior design project led by current CEO Andrew Lane. It has since participated in programs with Greentown Labs and Rice Clean Energy Accelerator. The company moved to Houston in 2023 and raised a pre-seed round. It has also received federal funding from the DOE. Capwell is currently piloting its commercial unit with oil and gas operators.

Deep Anchor Solutions

Offshore energy consulting and design company Deep Anchor Solutions aims to help expedite the adoption of floating offshore energy infrastructure with its deeply embedded ring anchor (DERA) technology. According to the company, its patented DERA system can be installed quietly without heavy-lift vessels, reducing anchor-related costs by up to 75 percent and lifecycle CO2 emissions by up to 80 percent.

The company was founded in 2023 by current CEO Junho Lee and CTO Charles Aubeny. Lee earned his Ph.D. in geotechnical engineering from Texas A&M University, where Aubeny is a professor of civil and environmental engineering. The company has participated in numerous accelerators and incubators, including Greentown Labs, MassChallenge, EnergyTech Nexus LiftOff, and others. Lee is an Activate 2025 fellow.

Eclipse Energy

Previously known as Gold H2, Eclipse Energy converts end-of-life oil fields into low-cost, sustainable hydrogen sources. It completed its first field trial this summer, which demonstrated subsurface bio-stimulated hydrogen production. According to the company, its technology could yield up to 250 billion kilograms of low-carbon hydrogen, which is estimated to provide enough clean power to Los Angeles for over 50 years and avoid roughly 1 billion metric tons of CO2 equivalent.

Eclipse is a spinoff of Houston biotech company Cemvita. It was founded in 2022 by Moji Karimi (CEO and chairman of Cemvita), Prabhdeep Sekhon (CEO of Eclipse), Tara Karimi, and Rayyan Islam. The company closed an $8 million series A this year and has plans to raise another round in 2026.

Loop Bioproducts

Agricultural chemical manufacturing company Loop Bioproducts leverages the physiology of prickly pear cactus grown in Texas to produce bioenergy, food, and remediate industrial wastewater streams. The company uses its remote sensing technology, proprietary image-based machine learning model, and R&D innovation to capture raw biogas from the cactuses and is focused on scaling cactuses as an industrial crop on land.

Rhiannon Parker founded Loop Bioproducts in 2023.

Mars Materials

Clean chemical manufacturing business Mars Materials is working to convert captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. The company develops and produces its drop-in chemical products in Houston and uses an in-licensed process for the National Renewable Energy Lab to produce acrylonitrile, which is used to produce plastics, synthetic fibers, and rubbers. The company reports that it plans to open its first commercial plant in the next 18 months.

Founded in 2019 by CEO Aaron Fitzgerald, CTO Kristian Gubsch, and lead engineer Trey Sheridan, the company has raised just under $1 million in capital and is backed by Bill Gates’ Breakthrough Energy, Shell, Black & Veatch, and other organizations.

Solidec

Chemical manufacturing company Solidec has developed autonomous generators that extract molecules from water and air and converts them into pure chemicals and fuels that are free of carbon emissions onsite, eliminating the need for transport, storage, and permitting. The company was founded around innovations developed by Rice University associate professor Haotian Wang.

The company was selected for the Chevron Technology Ventures’ catalyst program, Greentown Labs, NSF I-Corps and was part of the first cohort of the Activate Houston program. It won first place at the 2024 startup pitch competition at CERAWeek. Solidec was founded in 2023 by Wang, who serves as chief scientist, CEO Ryan DuChanois, and CTO Yang Xia. It closed a $2.5 million seed round earlier this year.

-----

The Houston Innovation Awards program is sponsored by Houston Community College, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

clean water research

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water.

PFAS have been linked to immune system disruption, certain cancers, liver damage and reproductive disorders. They can be found in water, soil and air, as well as in products like Teflon pans, waterproof clothing and food packaging. They do not degrade easily and are difficult to remove.

Thus far, PFAS cleanup methods have relied on adsorption, in which molecules cling to materials like activated carbon or ion-exchange resins. But these methods tend to have limited capacity, low efficiency, slow performance and can create additional waste.

The Rice-led study, published in the journal Advanced Materials, centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

The study was led by Rice professor Youngkun Chung, a postdoctoral fellow under the mentorship of Michael S. Wong. It was conducted in collaboration with Seoktae Kang, professor at the Korea Advanced Institute of Science and Technology, and Keon-Ham Kim, professor at Pukyung National University, who first discovered the LDH material.

The team evaluated the LDH material in river water, tap water and wastewater. And, according to Rice, that material’s unique copper-aluminum layers and charge imbalances created an ideal binding environment to capture PFAS molecules.

“To my astonishment, this LDH compound captured PFAS more than 1,000 times better than other materials,” Chung, lead author of the study and now a fellow at Rice’s WaTER (Water Technologies, Entrepreneurship and Research) Institute and Sustainability Institute, said in a news release. “It also worked incredibly fast, removing large amounts of PFAS within minutes, about 100 times faster than commercial carbon filters.”

Next, Chung, along with Rice professors Pedro Alvarez and James Tour, worked to develop an eco-friendly, sustainable method of thermally decomposing the PFAS captured on the LDH material. They heated saturated material with calcium carbonate, which eliminated more than half of the trapped PFAS without releasing toxic by-products.

The team believes the study’s results could potentially have large-scale applications in industrial cleanups and municipal water treatments.

“We are excited by the potential of this one-of-a-kind LDH-based technology to transform how PFAS-contaminated water sources are treated in the near future,” Wong added in the news release. “It’s the result of an extraordinary international collaboration and the creativity of young researchers.”