Nine research projects at Rice University have been granted $25,000 to advance their innovative solutions. Photo courtesy of Rice

Over a dozen Houston researchers wrapped up 2021 with the news of fresh funding thanks to an initiative and investment fund from Rice University.

The Technology Development Fund is a part of the university’s Creative Ventures initiative, which has awarded more than $4 million in grants since its inception in 2016. Rice's Office of Technology Transfer orchestrated the $25,000 grants across nine projects. Submissions were accepted through October and the winners were announced a few weeks ago.

The 2021 winners, according to Rice's news release, were:

  • Kevin McHugh, an assistant professor of bioengineering, is working on a method to automate an encapsulation process that uses biodegradable microparticles in the timed release of drugs to treat cancer and prevent infectious disease. He suggested the process could help ramp up the manufacture of accessible multidose vaccines.
  • Daniel Preston, an assistant professor of mechanical engineering, is developing a novel filtration system that will recover water typically released by cooling towers at natural gas power plants. The inexpensive filters will result in a significant savings in water costs during power generation.
  • Geoff Wehmeyer, an assistant professor of mechanical engineering; Matteo Pasquali, the A.J. Hartsook Professor of Chemical and Biomolecular Engineering and a professor of chemistry and materials science and nanoengineering; Junichiro Kono, the Karl F. Hasselmann Chair in Engineering, a professor of electrical and computer engineering, physics and astronomy and materials science and nanoengineering and chair of the applied physics program, and Glen Irvin Jr., a research professor in chemical and biomolecular engineering, are creating a solid-state, active heat-switching device to enable the rapid charging of batteries for electric vehicles. The lightweight device will use carbon nanotube fibers to optimize battery thermal management systems not only for cars but also, eventually, for electronic devices like laptops.
  • Xia Ben Hu, an associate professor of computer science, is developing his open-source machine learning system to democratize and accelerate small businesses’ digital transformation in e-commerce.
  • Bruce Weisman, a professor of chemistry and of materials science and nanoengineering, and Satish Nagarajaiah, a professor of civil and environmental engineering and of mechanical engineering, are working to advance their strain measurement system based on the spectral properties of carbon nanotubes. The system will allow for quick measurement of strain to prevent catastrophic failures and ensure the safety of aircraft, bridges, buildings, pipelines, ships, chemical storage vessels and other infrastructure.
  • Aditya Mohite, a professor of chemical and biomolecular engineering and associate professor of materials science and nanoengineering, and Michael Wong, the Tina and Sunit Patel Professor in Molecular Nanotechnology, a professor and chair of chemical and biomolecular engineering and a professor of chemistry, materials science and nanoengineering and of civil and environmental engineering, are scaling up novel photoreactors for the environmentally friendly generation of hydrogen. Their process combines of perovskite-based solar cells and state-of-the-art catalysts.
  • Rebekah Drezek, a professor of bioengineering, and Richard Baraniuk, the C. Sidney Burrus Professor of Electrical and Computer Engineering and a professor of statistics and computer science, are developing a system to rapidly diagnose sepsis using microfluidics and compressed sensing to speed the capture and analysis of microbial biomarkers.
  • Fathi Ghorbel, a professor of mechanical engineering and of bioengineering, is working on robotic localization technology in GPS-denied environments such as aboveground storage tanks, pressure vessels and floating production storage and offloading tanks. The system would enable robots to precisely associate inspection data to specific locations leading to efficiency and high quality of inspection and maintenance operations where regular inspections are required. This will dramatically improve the environmental impact and safety of these assets.
  • Kai Fu, a research scientist, and Yuji Zhao, an associate professor of electrical and computer engineering, are working to commercialize novel power diodes and transistors for electric vehicles. They expect their devices to reduce the volume of power systems while improving integration, power density, heat dissipation, storage, and energy efficiency.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Nominations are now open for the 2025 Houston Innovation Awards

Calling All Innovators

Calling all Houston innovators: The Houston Innovation Awards return this fall to celebrate the best and brightest in the Houston innovation ecosystem right now.

Presented by InnovationMap, the fifth annual Houston Innovation Awards will take place November 5 at TMC Helix Park.

The awards program will honor the top startups and innovators in Houston across 10 categories, and we're asking you to nominate the most deserving Houston innovators and innovative companies today.

This year's categories are:

  • Minority-founded Business, honoring an innovative startup founded or co-founded by BIPOC or LGBTQ+ representation.
  • Female-founded Business, honoring an innovative startup founded or co-founded by a woman.
  • Energy Transition Business, honoring an innovative startup providing a solution within renewables, climatetech, clean energy, alternative materials, circular economy, and beyond.
  • Health Tech Business, honoring an innovative startup within the health and medical technology sectors.
  • Deep Tech Business, honoring an innovative startup providing technology solutions based on substantial scientific or engineering challenges, including those in the AI, robotics, and space sectors.
  • Startup of the Year (People's Choice), honoring a startup celebrating a recent milestone or success. The winner will be selected by the community via an interactive voting experience.
  • Scaleup of the Year, honoring an innovative later-stage startup that's recently reached a significant milestone in company growth.
  • Incubator/Accelerator of the Year, honoring a local incubator or accelerator that is championing and fueling the growth of Houston startups.
  • Mentor of the Year, honoring an individual who dedicates their time and expertise to guide and support budding entrepreneurs.
  • Trailblazer, honoring an innovator who's made a lasting impact on the Houston innovation community.

Nominations may be made on behalf of yourself, your organization, and other leaders in the local innovation scene. The nomination period closes on August 31, so don't delay — nominate today at this link, or fill out the embedded form below.

Our panel of esteemed judges will review the nominations, and determine the finalists and winners. Finalists will be unveiled on September 30, and the 2025 Houston Innovation Awards winners will be announced live at our event on November 5.

Tickets will go on sale this fall. Stay tuned for that announcement, as well as more fanfare leading up to the 2025 Houston Innovation Awards.

Nominate now:

Interested in Innovation Awards sponsorship opportunities? Please contact sales@innovationmap.com.

MD Anderson launches $10M collaboration to advance personalized cancer treatment tech

fighting cancer

The University of Texas MD Anderson Cancer Center and Japan’s TOPPAN Holdings Inc. have announced a strategic collaboration to co-develop TOPPAN Holdings’ 3D cell culture, or organoid, technology known as invivoid.

The technology will be used as a tool for personalized cancer treatments and drug screening efforts, according to a release from MD Anderson. TOPPAN has committed $10 million over five years to advance the joint research activities.

“The strategic alliance with MD Anderson paves a promising path toward personalized cancer medicine," Hiroshi Asada, head of the Business Innovation Center at TOPPAN Holdings, said in a news release.

Invivoid is capable of establishing organoid models directly from patient biopsies or other tissues in a way that is faster and more efficient. Researchers may be able to test a variety of potential treatments in the laboratory to understand which approach may work best for the patient, if validated clinically.

“Organoids allow us to model the three-dimensional complexity of human cancers in the lab, thus allowing us to engineer a powerful translational engine—one that could not only predict how patients will respond to therapy before treatment begins but also could help to reimagine how we discover and validate next-generation therapies," Dr. Donna Hansel, division head of pathology and laboratory medicine at MD Anderson, added in the news release. “Through this collaboration, we hope to make meaningful progress in modeling cancer biology for therapeutic innovation.”

The collaboration will build upon preclinical research previously conducted by MD Anderson and TOPPAN. The organizations will work collaboratively to obtain College of American Pathologists (CAP) and Clinical Laboratory Improvement Amendments (CLIA) certifications for the technology, which demonstrate a commitment to high-quality patient care. Once the certifications are obtained, they plan to conduct observational clinical studies and then prospective clinical studies.

“We believe our proprietary invivoid 3D cell culture technology, by enabling the rapid establishment of organoid models directly from patient biopsies, has strong potential to help identify more effective treatment options and reduce the likelihood of unnecessary therapies,” Asada added in the release. “Through collaboration on CAP/CLIA certification and clinical validation, we aim to bring this innovation closer to real-world patient care and contribute meaningfully to the advancement of cancer medicine."