Nine research projects at Rice University have been granted $25,000 to advance their innovative solutions. Photo courtesy of Rice

Over a dozen Houston researchers wrapped up 2021 with the news of fresh funding thanks to an initiative and investment fund from Rice University.

The Technology Development Fund is a part of the university’s Creative Ventures initiative, which has awarded more than $4 million in grants since its inception in 2016. Rice's Office of Technology Transfer orchestrated the $25,000 grants across nine projects. Submissions were accepted through October and the winners were announced a few weeks ago.

The 2021 winners, according to Rice's news release, were:

  • Kevin McHugh, an assistant professor of bioengineering, is working on a method to automate an encapsulation process that uses biodegradable microparticles in the timed release of drugs to treat cancer and prevent infectious disease. He suggested the process could help ramp up the manufacture of accessible multidose vaccines.
  • Daniel Preston, an assistant professor of mechanical engineering, is developing a novel filtration system that will recover water typically released by cooling towers at natural gas power plants. The inexpensive filters will result in a significant savings in water costs during power generation.
  • Geoff Wehmeyer, an assistant professor of mechanical engineering; Matteo Pasquali, the A.J. Hartsook Professor of Chemical and Biomolecular Engineering and a professor of chemistry and materials science and nanoengineering; Junichiro Kono, the Karl F. Hasselmann Chair in Engineering, a professor of electrical and computer engineering, physics and astronomy and materials science and nanoengineering and chair of the applied physics program, and Glen Irvin Jr., a research professor in chemical and biomolecular engineering, are creating a solid-state, active heat-switching device to enable the rapid charging of batteries for electric vehicles. The lightweight device will use carbon nanotube fibers to optimize battery thermal management systems not only for cars but also, eventually, for electronic devices like laptops.
  • Xia Ben Hu, an associate professor of computer science, is developing his open-source machine learning system to democratize and accelerate small businesses’ digital transformation in e-commerce.
  • Bruce Weisman, a professor of chemistry and of materials science and nanoengineering, and Satish Nagarajaiah, a professor of civil and environmental engineering and of mechanical engineering, are working to advance their strain measurement system based on the spectral properties of carbon nanotubes. The system will allow for quick measurement of strain to prevent catastrophic failures and ensure the safety of aircraft, bridges, buildings, pipelines, ships, chemical storage vessels and other infrastructure.
  • Aditya Mohite, a professor of chemical and biomolecular engineering and associate professor of materials science and nanoengineering, and Michael Wong, the Tina and Sunit Patel Professor in Molecular Nanotechnology, a professor and chair of chemical and biomolecular engineering and a professor of chemistry, materials science and nanoengineering and of civil and environmental engineering, are scaling up novel photoreactors for the environmentally friendly generation of hydrogen. Their process combines of perovskite-based solar cells and state-of-the-art catalysts.
  • Rebekah Drezek, a professor of bioengineering, and Richard Baraniuk, the C. Sidney Burrus Professor of Electrical and Computer Engineering and a professor of statistics and computer science, are developing a system to rapidly diagnose sepsis using microfluidics and compressed sensing to speed the capture and analysis of microbial biomarkers.
  • Fathi Ghorbel, a professor of mechanical engineering and of bioengineering, is working on robotic localization technology in GPS-denied environments such as aboveground storage tanks, pressure vessels and floating production storage and offloading tanks. The system would enable robots to precisely associate inspection data to specific locations leading to efficiency and high quality of inspection and maintenance operations where regular inspections are required. This will dramatically improve the environmental impact and safety of these assets.
  • Kai Fu, a research scientist, and Yuji Zhao, an associate professor of electrical and computer engineering, are working to commercialize novel power diodes and transistors for electric vehicles. They expect their devices to reduce the volume of power systems while improving integration, power density, heat dissipation, storage, and energy efficiency.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.