UH — along with some industry partners — has announced plans to work on applications for the industrial metaverse. Image via Getty Images

The University of Houston is helping advance the industrial metaverse.

UH has teamed up with the AI Innovation Consortium, software company Nvidia, and oil and gas engineering and services company TechnipFMC to create applications for the industrial metaverse. The project is affiliated with the Artificial Intelligence Industry Incubator and Digital Oilfield Lab at UH’s campus in Sugar Land. The incubator and lab opened in 2020.

As VentureBeat defines it, the industrial metaverse can transform the way every physical asset — such as a building, plane, robot, or car — is created, assembled, and operated. The industrial metaverse marries the “real world” with technology such as artificial intelligence (AI), machine learning, cloud computing, edge computing, the internet of things (IoT), 5G, and extended reality (virtual, augmented, and mixed reality).

Global revenue for the industrial metaverse is projected to reach $540 billion by 2025. A key fixture of the industrial metaverse are “digital twins,” which are virtual replicas of physical entities or systems (such as factories).

Adam Berg, manager of learning solutions at TechnipFMC, has been working with the UH College of Technology and the AI Innovation Consortium to test an augmented reality program for management of upstream resources. TechnipFMC is a pioneer in extended reality.

One of the UH professors participating in this effort is David Crawley, professor of practice at the university’s College of Technology and a trustee of the AI Innovation Consortium. Last year, the consortium hosted an AI conference at the UH campus in Sugar Land. The consortium is a think tank whose members include UH, Pennsylvania State University, Louisiana State University, and the University of Louisville (Kentucky).

Crawley says the consortium’s “academic ecosystem” is critical to developing the workforce of the future.

Konrad Konarski, chairman of the consortium, says the group is building the world’s largest portfolio of industrial metaverse apps for the oilfield services industry and various manufacturing sectors.

“This means a maintenance manager, an operations technology expert, or whoever is responsible for a metaverse technology project will be able to pick up an augmented reality platform or a wearable computer, or simply a smartphone, and seamlessly interconnect their real-world operating environment to and from the metaverse,” Konarski, an AI and IoT expert, says in a news release.

At the recent Global Corporate Venture conference, two corporate venture execs peeled back the curtain on what they look for from startups. Getty Images

Here's what corporate venture programs are looking for from startups within the energy industry

money moves

One of the challenges for Houston energy startups is not knowing what potential big corporate partners want from them. At the recent Global Corporate Venture, two corporate venture execs shared what all they're looking for and the challenges they are facing.

Diana Grauer, director of external technology engagement and venture capital at Technip FMC, and Bradley Andrews, president of digital at Worley joined a panel with moderator Wade Bitaraf, founder of Plug and Play Energy & Sustainability. The panel, entitled "How globalization and diversification can boost a local innovation ecosystem," explored what each exec looks for in potential partnerships with startups.

At TechnipFMC, which has a newer corporate investment group, Grauer says her team looks for startup technologies within four key categories, industry 4.0, digitization, materials and processes, and energy transition. Within those categories, she says they aren't looking for startups that will provide a big return on investment, rather technologies that will advance the company's capabilities.

"We're focused on strategic returns, not necessarily your conventional financial returns," she says.

Andrews echoed this point, admitting that while a big exit for a portfolio company is never bad, but Worley would rather have technologies that benefit their business platform.

"As long as [a technology is] under core strategy and driving internal strategy, we're kind of in," he says. "Anything around data science, automation, new energy, sustainability, those are all kind of sweet spots for us."

A big challenge, Andrews says, is communicating companywide the importance of looking outward for innovative opportunities, rather than relying on the company's staff.

"The idea of corporate tech startups coming to fruition within our industry is kind of new. We used to build from within," Andrews says. "We're still as an industry trying to figure out how to do this."

Grauer says that, similarily, her biggest challenge is getting pushback from within TechnipFMC of people who just think their company should fund its current workforce to find solutions. But Grauer responds to them explaining that the company needs to move faster than that and the way to do that is through working with startups. That's why the company has created an Open Innovation Program. According to Grauer, the organization expects to make its first investment by the end of the year.

For Andrews, the state of Houston's innovation ecosystem is exciting, and he notes that he looks at emerging technologies across industries. A technical solution in medicine might have an application in energy, for example. And, considering the state of the energy industry, now is the time to be more collaborative within Houston as more and more global challenges emerge.

"I think Houston has everything it needs to make a stake in this," Andrews says. "We're not competing with each other in this industry. We're competing against what the world is going to demand from us. It's time for us in corporate land and set our egos aside."

Grauer says she's seen the city's innovation resources grow over the years, noting the emergence of The Cannon, Rice Alliance, and Plug and Play.

"I really think that the energy industry in Houston is really starting to catch up and blossom," she says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston neighbor named richest small town in Texas for 2025

Ranking It

Affluent Houston neighbor Bellaire is cashing in as the richest small town in Texas for 2025, according to new study from GoBankingRates.

The report, "The Richest Small Town in Every State," used data from the U.S. Census Bureau's American Community Survey to determine the 50 richest small towns in America based on their median household income.

Of course, Houstonians realize that describing Bellaire as a "small town" is a bit of misnomer. Located less than 10 miles from downtown and fully surrounded by the City of Houston, Bellaire is a wealthy enclave that boasts a population of just over 17,000 residents. These affluent citizens earn a median $236,311 in income every year, which GoBankingRates says is the 11th highest household median income out of all 50 cities included in the report.

The average home in this city is worth over $1.12 million, but Bellaire's lavish residential reputation often attracts properties with multimillion-dollar price tags.

Bellaire also earned a shining 81 livability score for its top quality schools, health and safety, commute times, and more. The livability index, provided by Toronto, Canada-based data analytics and real estate platform AreaVibes, said Bellaire has "an abundance of exceptional local amenities."

"Among these are conveniently located grocery stores, charming coffee shops, diverse dining options and plenty of spacious parks," AreaVibes said. "These local amenities contribute significantly to its overall appeal, ensuring that [residents'] daily needs are met and offering ample opportunities for leisure and recreation."

Earlier in 2025, GoBankingRates ranked Bellaire as the No. 23 wealthiest suburb in America, and it's no stranger to being named on similar lists comparing the richest American cities.

---

This article originally appeared on CultureMap.com.

How a Houston startup is taking on corrosion, a costly climate threat

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

This article originally appeared on our sister site, EnergyCapitalHTX.com.

These 50+ Houston scientists rank among world’s most cited

science stars

Fifty-one scientists and professors from Houston-area universities and institutions were named among the most cited in the world for their research in medicine, materials sciences and an array of other fields.

The Clarivate Highly Cited Researchers considers researchers who have authored multiple "Highly Cited Papers" that rank in the top 1percent by citations for their fields in the Web of Science Core Collection. The final list is then determined by other quantitative and qualitative measures by Clarivate's judges to recognize "researchers whose exceptional and community-wide contributions shape the future of science, technology and academia globally."

This year, 6,868 individual researchers from 60 different countries were named to the list. About 38 percent of the researchers are based in the U.S., with China following in second place at about 20 percent.

However, the Chinese Academy of Sciences brought in the most entries, with 258 researchers recognized. Harvard University with 170 researchers and Stanford University with 141 rounded out the top 3.

Looking more locally, the University of Texas at Austin landed among the top 50 institutions for the first time this year, tying for 46th place with the Mayo Clinic and University of Minnesota Twin Cities, each with 27 researchers recognized.

Houston once again had a strong showing on the list, with MD Anderson leading the pack. Below is a list of the Houston-area highly cited researchers and their fields.

UT MD Anderson Cancer Center

  • Ajani Jaffer (Cross-Field)
  • James P. Allison (Cross-Field)
  • Maria E. Cabanillas (Cross-Field)
  • Boyi Gan (Molecular Biology and Genetics)
  • Maura L. Gillison (Cross-Field)
  • David Hong (Cross-Field)
  • Scott E. Kopetz (Clinical Medicine)
  • Pranavi Koppula (Cross-Field)
  • Guang Lei (Cross-Field)
  • Sattva S. Neelapu (Cross-Field)
  • Padmanee Sharma (Molecular Biology and Genetics)
  • Vivek Subbiah (Clinical Medicine)
  • Jennifer A. Wargo (Molecular Biology and Genetics)
  • William G. Wierda (Clinical Medicine)
  • Ignacio I. Wistuba (Clinical Medicine)
  • Yilei Zhang (Cross-Field)
  • Li Zhuang (Cross-Field)

Rice University

  • Pulickel M. Ajayan (Materials Science)
  • Pedro J. J. Alvarez (Environment and Ecology)
  • Neva C. Durand (Cross-Field)
  • Menachem Elimelech (Chemistry and Environment and Ecology)
  • Zhiwei Fang (Cross-Field)
  • Naomi J. Halas (Cross-Field)
  • Jun Lou (Materials Science)
  • Aditya D. Mohite (Cross-Field)
  • Peter Nordlander (Cross-Field)
  • Andreas S. Tolias (Cross-Field)
  • James M. Tour (Cross-Field)
  • Robert Vajtai (Cross-Field)
  • Haotian Wang (Chemistry and Materials Science)
  • Zhen-Yu Wu (Cross-Field)

Baylor College of Medicine

  • Nadim J. Ajami (Cross-Field)
  • Biykem Bozkurt (Clinical Medicine)
  • Hashem B. El-Serag (Clinical Medicine)
  • Matthew J. Ellis (Cross-Field)
  • Richard A. Gibbs (Cross-Field)
  • Peter H. Jones (Pharmacology and Toxicology)
  • Sanjay J. Mathew (Cross-Field)
  • Joseph F. Petrosino (Cross-Field)
  • Fritz J. Sedlazeck (Biology and Biochemistry)
  • James Versalovic (Cross-Field)

University of Houston

  • Zhifeng Ren (Cross-Field)
  • Yan Yao (Cross-Field)
  • Yufeng Zhao (Cross-Field)
  • UT Health Science Center Houston
  • Hongfang Liu (Cross-Field)
  • Louise D. McCullough (Cross-Field)
  • Claudio Soto (Cross-Field)

UTMB Galveston

  • Erez Lieberman Aiden (Cross-Field)
  • Pei-Yong Shi (Cross-Field)

Houston Methodist

  • Eamonn M. M. Quigley (Cross-Field)