Seven student-founded startups pitched their business plans at an annual NASA event. Photo via NASA.gov

Several groups of students from all over the United States tapped into technology developed by NASA to create business plans. The teams competed in Houston last week for thousands of dollars, and one team went home with the win.

NASA’s Minority University Research and Education Project, or MUREP, hosted its annual "Space Tank" pitch event, MUREP Innovation and Technology Tech Transfer Idea Competition, or MITTIC, last week at Space Center Houston. Seven teams from across the country — including three Texas teams — pitched business plans based on NASA-originated technology.

“Students and faculty members of MITTIC are notably engaging with our agency, but they are helping to fulfill our mission to make the earth a better, safer place creating products and services that will shape the future," says Donna Shafer, associate director at Johnson Space Center.

All seven teams — each led by a minority student — went home with at least $5,000 as a prize for making it to the finals, but one team from the University of Massachusetts at Boston took home first place and a $10,000 prize. The winning team is also invited to join Team Piezo Pace from the University of St. Thomas, Houston, in a visit to NASA’s Ames Research Center in Silicon Valley, California, for additional look in the innovation and entrepreneurial space.

The judges for the event included: Hope Shimabuku, director of the U.S. Patent and Trademark Office for the Texas Region; Megan Ortiz, project manager at NASA; Lawrence Cosby, vice president of IP strategy at JPMorgan Chase & Co; Terik Tidwell, director of inclusive innovation at VentureWell; Jorge Valdes, program advisor on STEM education and intellectual property at the United States Patent and Trademark Office; Walt Ugalde, economic development executive at NASA; and Laura Barron, autonomous systems technology deputy project manager at NASA.

The seven finalist teams — and the technology they are working on — are as follows:

  • Lone Star College - CyFair’s team Aquarius Solutions, which pitched its water purification product, ClearFlow, based off an ammonia removal system developed at NASA
  • Fayetteville State University in North Carolina’s ASAPA team pitched their Autonomous Solar Array Assembly drone technology that’s based on NASA’s Print-assisted Photovoltaic Assembly system for automated printing of solar panels.
  • University of Houston-Clear Lake’s team AstroNOTS has identified a technology to address the safety of wildfire rescue teams. The PyroCap is a emergence fire shelter based on NASA’s Lightweight Flexible Thermal Protection System.
  • Santa Monica College in California’s team, BREATHE, pitched a noninvasive technology to replace traditional mammograms. The device can analyze breath through a NASA-designed sensor.
  • University of Massachusetts-Boston’s winning team, LazerSense Solutions, is working on a technology for smoke and gas detection. The PartaSense device can detect everything from carbon monoxide to black mold. It’s based on NASA’s MPASS IP.
  • Hartnell College in California’s team PanterBotics is working on an zero-emission electric vehicle, the OmniZero, to address climate change. The technology, a modular robotic vehicle, originated at NASA.
  • University of Texas at Austin’s Longhorn Innovators, who pitched a thinking cap technology to increase and enhance focus. The wearable device is based on NASA technology ZONE, or Zeroing Out Negative Effects, an analysis from EEG sensors.

Think you know what's happening at university tech transfer offices? Think again. Graphic by Miguel Tovar/University of Houston

Houston expert: 4 misconceptions of university tech transfer offices

houston voices

Beyond their education and research missions, universities across the nation have turned research discoveries into big business. In addition to protecting intellectual property from faculty discoveries, universities build and support startup pipelines to help researchers commercialize those technologies.

However, there are a few misconceptions when it comes to university tech transfer offices that keep faculty at bay. Here, we'll take a look at four misconceptions and explore the truth behind the thinking.

Misconception 1: Filing patent paperwork is all tech transfer offices do

While tech transfer offices are in the business of patents, many offer a full range of services to support the commercialization process. This can include everything from strategy and startup development to the establishment of enterprise and industry ventures. Many university tech transfer offices operate incubators, co-working space for startups and accelerator programs, and some even build and manage venture funds.

"At the University of Houston, we now offer lots of services to faculty, such as strategy sessions to help them understand the commercial potential of their technologies," said Chris Taylor, executive director of the UH Office of Technology Transfer and Innovation. "We also help faculty license their technologies to ensure fair use as they transition them into the market."

Misconception 2: I need to have a fully-developed idea to submit a disclosure

According to Taylor, many faculty begin interacting with tech transfer offices once they have a technology fully developed. But tech transfer offices can do much more for faculty if involved early in the process.

"Yes, we do help protect what's been developed. But, if we have a conversation at the beginning, we could help faculty shape or pivot their technologies. This will give them the greatest market potential," he said.

One of the many benefits of tech transfer offices is their ability to readily research the market.

"We can determine whether or not technologies can be disclosed, patented and licensed. It's important to know this before going through a lengthy and expensive filing process."

Misconception 3: The patent process will slow down my publication plans

Publishing researching findings may be one of the most important activities for the university researcher. However, publishing research on unprotected discoveries can result in the loss of patent rights. Therefore, filing a disclosure is very important, according to Taylor.

"Publishing is one of the best ways to market university technologies," he said. "However, industry values patented technologies, so it's better to make a small time investment to protect your IP.

Misconception 4: Getting a patent is the primary goal for tech transfer offices

As Taylor explains, the primary goal of tech transfer offices is to help faculty "transfer" their discoveries to society. And while patenting technologies is one way to do that, tech transfer offices also provide education and mentoring programs. They also support other protections such as copyrights for software.

"IP protection is important," he said. "It gives faculty control over how their technology is used, for good or for bad. So, this is an important part of the work that we do for faculty. But, we support faculty in so many other ways through the entire pipeline."

------

This article originally appeared on the University of Houston's The Big Idea. Lindsay Lewis, the author of this piece, is the executive director of communivations for the UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas tops ranking of best state for investors in new report

by the numbers

Texas ranks third on a new list of the best states for investors and startups.

Investment platform BrokerChooser weighed five factors to come up with its ranking:

  • 2024 Google search volume for terms related to investing
  • Number of investors
  • Number of businesses receiving investments in 2024
  • Total amount of capital invested in businesses in 2024
  • Percentage change in amount of investment from 2019 to 2024

Based on those figures, provided mostly by Crunchbase, Texas sits at No. 3 on the list, behind No. 1 California and No. 2 New York.

Especially noteworthy for Texas is its investment total for 2024: more than $164.5 billion. From 2019 to 2024, the state saw a 440 percent jump in business investments, according to BrokerChooser. The same percentages are 204 percent for California and 396 percent for New York.

“There is definitely development and diversification in the American investment landscape, with impressive growth in areas that used to fly under the radar,” says Adam Nasli, head analyst at BrokerChooser.

According to Crunchbase, funding for Texas startups is off to a strong start in 2025. In the first three months of this year, venture capital investors poured nearly $2.9 billion into Lone Star State companies, Crunchbase data shows. Crunchbase attributes that healthy dollar amount to “enthusiasm around cybersecurity, defense tech, robotics, and de-extincting mammoths.”

During the first quarter of this year, roughly two-thirds of VC funding in Texas went to just five companies, says Crunchbase. Those companies are Austin-based Apptronik, Austin-based Colossal Biosciences, Dallas-based Island, Austin-based NinjaOne, and Austin-based Saronic.

Autonomous truck company rolls out driverless Houston-Dallas route

up and running

Houston is helping drive the evolution of self-driving freight trucks.

In October, Aurora opened a more than 90,000-square-foot terminal at a Fallbrook Drive logistics hub in northwest Houston to support the launch of its first “lane” for driverless trucks—a Houston-to-Dallas route on the Interstate 45 corridor. Aurora opened its Dallas-area terminal in April and the company began regular driverless customer deliveries between the two Texas cities on April 27.

Close to half of all truck freight in Texas moves along I-45 between Houston and Dallas.

“Now, we are the first company to successfully and safely operate a commercial driverless trucking service on public roads. Riding in the back seat for our inaugural trip was an honor of a lifetime – the Aurora Driver performed perfectly and it’s a moment I’ll never forget,” Chris Urmson, CEO and co-founder of Pittsburgh-based Aurora, said in a news release.

Aurora produces software that controls autonomous vehicles and is known for its flagship product, the Aurora Driver. The software is installed in Volvo and Paccar trucks, the latter of which includes brands like Kenworth and Peterbilt.

Aurora previously hauled more than 75 loads per week under the supervision of vehicle operators from Houston to Dallas and Fort Worth to El Paso for customers in its pilot project, including FedEx, Uber Freight and Werner. To date, it has completed over 1,200 miles without a driver.

The company launched its new Houston to Dallas route with customers Uber Freight and Hirschbach Motor Lines, which ran supervised commercial pilots with Aurora.

“Transforming an old school industry like trucking is never easy, but we can’t ignore the safety and efficiency benefits this technology can deliver. Autonomous trucks aren’t just going to help grow our business – they’re also going to give our drivers better lives by handling the lengthier and less desirable routes,” Richard Stocking, CEO of Hirschbach Motor Lines, added in the statement.

The company plans to expand its service to El Paso and Phoenix by the end of 2025.

“These new, autonomous semis on the I-45 corridor will efficiently move products, create jobs, and help make our roadways safer,” Gov. Greg Abbott added in the release. “Texas offers businesses the freedom to succeed, and the Aurora Driver will further spur economic growth and job creation in Texas. Together through innovation, we will build a stronger, more prosperous Texas for generations.”

In July, Aurora said it raised $820 million in capital to fuel its growth—growth that’s being accompanied by scrutiny.

In light of recent controversies surrounding self-driving vehicles, the International Brotherhood of Teamsters, whose union members include over-the-road truckers, recently sent a letter to Lt. Gov. Dan Patrick calling for a ban on autonomous vehicles in Texas.

“The Teamsters believe that a human operator is needed in every vehicle—and that goes beyond partisan politics,” the letter states. “State legislators have a solemn duty in this matter to keep dangerous autonomous vehicles off our streets and keep Texans safe. Autonomous vehicles are not ready for prime time, and we urge you to act before someone in our community gets killed.”

Houston cell therapy company launches second-phase clinical trial

fighting cancer

A Houston cell therapy company has dosed its first patient in a Phase 2 clinical trial. March Biosciences is testing the efficacy of MB-105, a CD5-targeted CAR-T cell therapy for patients with relapsed or refractory CD5-positive T-cell lymphoma.

Last year, InnovationMap reported that March Biosciences had closed its series A with a $28.4 million raise. Now, the company, co-founded by Sarah Hein, Max Mamonkin and Malcolm Brenner, is ready to enroll a total of 46 patients in its study of people with difficult-to-treat cancer.

The trial will be conducted at cancer centers around the United States, but the first dose took place locally, at The University of Texas MD Anderson Cancer Center. Dr. Swaminathan P. Iyer, a professor in the department of lymphoma/myeloma at MD Anderson, is leading the trial.

“This represents a significant milestone in advancing MB-105 as a potential treatment option for patients with T-cell lymphoma who currently face extremely limited therapeutic choices,” Hein, who serves as CEO, says. “CAR-T therapies have revolutionized the treatment of B-cell lymphomas and leukemias but have not successfully addressed the rarer T-cell lymphomas and leukemias. We are optimistic that this larger trial will further validate MB-105's potential to address the critical unmet needs of these patients and look forward to reporting our first clinical readouts.”

The Phase 1 trial showed promise for MB-105 in terms of both safety and efficacy. That means that potentially concerning side effects, including neurological events and cytokine release above grade 3, were not observed. Those results were published last year, noting lasting remissions.

In January 2025, MB-105 won an orphan drug designation from the FDA. That results in seven years of market exclusivity if the drug is approved, as well as development incentives along the way.

The trial is enrolling its single-arm, two-stage study on ClinicalTrials.gov. For patients with stubborn blood cancers, the drug is providing new hope.