Seven student-founded startups pitched their business plans at an annual NASA event. Photo via NASA.gov

Several groups of students from all over the United States tapped into technology developed by NASA to create business plans. The teams competed in Houston last week for thousands of dollars, and one team went home with the win.

NASA’s Minority University Research and Education Project, or MUREP, hosted its annual "Space Tank" pitch event, MUREP Innovation and Technology Tech Transfer Idea Competition, or MITTIC, last week at Space Center Houston. Seven teams from across the country — including three Texas teams — pitched business plans based on NASA-originated technology.

“Students and faculty members of MITTIC are notably engaging with our agency, but they are helping to fulfill our mission to make the earth a better, safer place creating products and services that will shape the future," says Donna Shafer, associate director at Johnson Space Center.

All seven teams — each led by a minority student — went home with at least $5,000 as a prize for making it to the finals, but one team from the University of Massachusetts at Boston took home first place and a $10,000 prize. The winning team is also invited to join Team Piezo Pace from the University of St. Thomas, Houston, in a visit to NASA’s Ames Research Center in Silicon Valley, California, for additional look in the innovation and entrepreneurial space.

The judges for the event included: Hope Shimabuku, director of the U.S. Patent and Trademark Office for the Texas Region; Megan Ortiz, project manager at NASA; Lawrence Cosby, vice president of IP strategy at JPMorgan Chase & Co; Terik Tidwell, director of inclusive innovation at VentureWell; Jorge Valdes, program advisor on STEM education and intellectual property at the United States Patent and Trademark Office; Walt Ugalde, economic development executive at NASA; and Laura Barron, autonomous systems technology deputy project manager at NASA.

The seven finalist teams — and the technology they are working on — are as follows:

  • Lone Star College - CyFair’s team Aquarius Solutions, which pitched its water purification product, ClearFlow, based off an ammonia removal system developed at NASA
  • Fayetteville State University in North Carolina’s ASAPA team pitched their Autonomous Solar Array Assembly drone technology that’s based on NASA’s Print-assisted Photovoltaic Assembly system for automated printing of solar panels.
  • University of Houston-Clear Lake’s team AstroNOTS has identified a technology to address the safety of wildfire rescue teams. The PyroCap is a emergence fire shelter based on NASA’s Lightweight Flexible Thermal Protection System.
  • Santa Monica College in California’s team, BREATHE, pitched a noninvasive technology to replace traditional mammograms. The device can analyze breath through a NASA-designed sensor.
  • University of Massachusetts-Boston’s winning team, LazerSense Solutions, is working on a technology for smoke and gas detection. The PartaSense device can detect everything from carbon monoxide to black mold. It’s based on NASA’s MPASS IP.
  • Hartnell College in California’s team PanterBotics is working on an zero-emission electric vehicle, the OmniZero, to address climate change. The technology, a modular robotic vehicle, originated at NASA.
  • University of Texas at Austin’s Longhorn Innovators, who pitched a thinking cap technology to increase and enhance focus. The wearable device is based on NASA technology ZONE, or Zeroing Out Negative Effects, an analysis from EEG sensors.

Think you know what's happening at university tech transfer offices? Think again. Graphic by Miguel Tovar/University of Houston

Houston expert: 4 misconceptions of university tech transfer offices

houston voices

Beyond their education and research missions, universities across the nation have turned research discoveries into big business. In addition to protecting intellectual property from faculty discoveries, universities build and support startup pipelines to help researchers commercialize those technologies.

However, there are a few misconceptions when it comes to university tech transfer offices that keep faculty at bay. Here, we'll take a look at four misconceptions and explore the truth behind the thinking.

Misconception 1: Filing patent paperwork is all tech transfer offices do

While tech transfer offices are in the business of patents, many offer a full range of services to support the commercialization process. This can include everything from strategy and startup development to the establishment of enterprise and industry ventures. Many university tech transfer offices operate incubators, co-working space for startups and accelerator programs, and some even build and manage venture funds.

"At the University of Houston, we now offer lots of services to faculty, such as strategy sessions to help them understand the commercial potential of their technologies," said Chris Taylor, executive director of the UH Office of Technology Transfer and Innovation. "We also help faculty license their technologies to ensure fair use as they transition them into the market."

Misconception 2: I need to have a fully-developed idea to submit a disclosure

According to Taylor, many faculty begin interacting with tech transfer offices once they have a technology fully developed. But tech transfer offices can do much more for faculty if involved early in the process.

"Yes, we do help protect what's been developed. But, if we have a conversation at the beginning, we could help faculty shape or pivot their technologies. This will give them the greatest market potential," he said.

One of the many benefits of tech transfer offices is their ability to readily research the market.

"We can determine whether or not technologies can be disclosed, patented and licensed. It's important to know this before going through a lengthy and expensive filing process."

Misconception 3: The patent process will slow down my publication plans

Publishing researching findings may be one of the most important activities for the university researcher. However, publishing research on unprotected discoveries can result in the loss of patent rights. Therefore, filing a disclosure is very important, according to Taylor.

"Publishing is one of the best ways to market university technologies," he said. "However, industry values patented technologies, so it's better to make a small time investment to protect your IP.

Misconception 4: Getting a patent is the primary goal for tech transfer offices

As Taylor explains, the primary goal of tech transfer offices is to help faculty "transfer" their discoveries to society. And while patenting technologies is one way to do that, tech transfer offices also provide education and mentoring programs. They also support other protections such as copyrights for software.

"IP protection is important," he said. "It gives faculty control over how their technology is used, for good or for bad. So, this is an important part of the work that we do for faculty. But, we support faculty in so many other ways through the entire pipeline."

------

This article originally appeared on the University of Houston's The Big Idea. Lindsay Lewis, the author of this piece, is the executive director of communivations for the UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston femtech co. debuts new lactation and wellness pods

mom pod

Houston-based femtech company Work&, previously known as Work&Mother, has introduced new products in recent months aimed at supporting working mothers and the overall health of all employees.

The company's new Lactation Pod and Hybrid Pod serve as dual-use lactation and wellness spaces to meet employer demand, the company shared in a news release. The compact pods offer flexible design options that can serve permanent offices and nearly all commercial spaces.

They feature a fully compliant lactation station while also offering wellness functionalities that can support meditation, mental health, telehealth and prayer. In line with Work&'s other spaces, the pods utilize the Work& scheduling platform, which prioritizes lactation bookings to help employers comply with the PUMP Act.

“This isn’t about perks,” Jules Lairson, Work& co-founder and COO, said in the release. “It’s about meeting people where they are—with dignity and intentional design. That includes the mother returning to work, the employee managing anxiety, and everyone in between.”

According to the company, several Fortune 500 companies are already using the pods, and Work& has plans to grow the products' reach.

Earlier this year, Work& introduced its first employee wellness space at MetroNational’s Memorial City Plazas, representing Work&'s shift to offer an array of holistic health and wellness solutions for landlords and tenants.

The company, founded in 2017 by Lairson and CEO Abbey Donnell, was initially focused on outfitting commercial buildings with lactation accommodations for working parents. While Work& still offers these services through its Work&Mother branch, the addition of its Work&Wellbeing arm allowed the company to also address the broader wellness needs of all employees.

The company rebranded as Work& earlier this year.

Rice biotech studio secures investment from Modi Ventures, adds founder to board

fresh funding

RBL LLC, which supports commercialization for ventures formed at the Rice University Biotech Launch Pad, has secured an investment from Houston-based Modi Ventures.

Additionally, RBL announced that it has named Sahir Ali, founder and general partner of Modi Ventures, to its board of directors.

Modi Ventures invests in biotech companies that are working to advance diagnostics, engineered therapeutics and AI-driven drug discovery. The firm has $134 million under management after closing an oversubscribed round this summer.

RBL launched in 2024 and is based out of Houston’s Texas Medical Center Helix Park. William McKeon, president and CEO of the TMC, previously called the launch of RBL a “critical step forward” for Houston’s life sciences ecosystem.

“RBL is dedicated to building companies focused on pioneering and intelligent bioelectronic therapeutics,” Ali said in a LinkedIn post. “This partnership strengthens the Houston biotech ecosystem and accelerates the transition of groundbreaking lab discoveries into impactful therapies.”

Ali will join board members like managing partner Paul Wotton, Rice bioengineering professor Omid Veiseh, scientist and partner at KdT Ventures Rima Chakrabarti, Rice alum John Jaggers, CEO of Arbor Biotechnologies Devyn Smith, and veteran executive in the life sciences sector James Watson.

Ali has led transformative work and built companies across AI, cloud computing and precision medicine. Ali also serves on the board of directors of the Drug Information Association, which helps to collaborate in drug, device and diagnostics developments.

“This investment by Modi Ventures will be instrumental to RBL’s growth as it reinforces confidence in our venture creation model and accelerates our ability to develop successful biotech startups,” Wotton said in the announcement. "Sahir’s addition to the board will also amplify this collaboration with Modi. His strategic counsel and deep understanding of field-defining technologies will be invaluable as we continue to grow and deliver on our mission.”