The Houston area is expected to employ 158,176 tech professionals this year, according to a new report by CompTIA. Photo via Getty Images.

Tech employment in the Houston metro area is expected to climb by more than two percent this year, according to a new projection.

CompTIA’s State of the Tech Workforce 2025 report forecasts the Houston area will employ 158,176 tech professionals this year, compared with an estimated 154,905 last year. That would be an increase of 2.1 percent.

These numbers take into account tech workers across all industries, not just those employed in the tech sector. Many of these professionals do work in the tech sector (40 percent), with the remainder (60 percent) employed in other sectors.

Even more impressive than the year-to-year increase is the jump in Houston-area tech employment from 2019 to 2025. During that period, tech employment grew 16.6 percent, according to the report.

The Houston area ranks eighth among major metro areas for the number of tech jobs expected to be added this year (3,271). Dallas rises to No. 1 for the most jobs expected to be added (projection of 13,997 new tech jobs in 2025), with Austin at No. 5 (7,750 new jobs) and San Antonio at No. 21 (1,617 new jobs).

On a state-by-state basis, Texas ranks first for the number of tech workers projected to be added this year (40,051)—up significantly from the 8,181 jobs estimated to be added in 2024—and second for the size of the tech workforce last year (972,747), the report says. The Lone Star State lands at No. 4 for the highest percentage (24 percent) of tech jobs expected to be added from 2025 to 2035.

Backed by a nearly $1.4 billion commitment from the state, the semiconductor industry is helping propel the growth of tech jobs in Houston and throughout Texas.

In 2023, the state launched the Texas Semiconductor Innovation Fund. The fund provides incentives to encourage semiconductor research, design and manufacturing in Texas. State lawmakers allocated $698.3 million for the fund. Another $660 million in state money will help establish semiconductor research and development centers at the University of Texas at Austin and Texas A&M University.

“Texas has the innovation, the infrastructure, and the talent to continue to lead the American resurgence in critical semiconductor manufacturing and the technologies of tomorrow,” Gov. Greg Abbott said in a release.

The Houston area is benefiting from the semiconductor boom.

For example, chip manufacturer Nvidia and electronics maker Foxconn plan to build a factory in Houston that will produce AI supercomputers.

Nvidia said in April that the AI supercomputers “are the engines of a new type of data center created for the sole purpose of processing artificial intelligence — AI factories that are the infrastructure powering a new AI industry.”

Meanwhile, tech giant Apple plans to open a 250,000-square-foot factory in Houston that will manufacture servers for its data centers in support of Apple’s AI business. The Houston plant is part of a four-year, $500 million nationwide expansion that Apple unveiled in February.

Texas ranks in the top 10 states with promising digital economies. Photo via Getty Images

The future of Texas’ digital economy is strong, according to a new study

by the numbers

A new report from California-based software firm Tipalti ranks Texas in the top 10 for states with the best digital economy outlooks.

Based on findings from Indeed.com, the U.S. Census Bureau, The Computing Technology Industry Association, and BroadbanNow, the study looks at which states and countries are best prepared for future and continued shifts towards a more digitized world.

Texas was ranked ninth overall, with a score of 8.4 out of 10 for Tipalti’s digital economy score. The report based this score on a few criteria. Here’s what it found.

Texas was found to have had:

  • 86.23 “digital jobs” per every 100,000 posted
  • A 425.9 MBps download speed
  • 2,634.01 tech employees per every 100,000 employees
  • An economic impact of $142.8 billion economic impact from the tech sector
  • 39,299 tech firms in the state
  • A $91,885 median tech occupation wage

Comparatively, Virginia, which ranked first with a 10 out of 10 score, had:

  • 125.09 “digital jobs” per every 100,000 posted
  • A 505.6 MBps download speed
  • 4,047.26 tech employees per every 100,000 employees
  • An economic impact of $57.8 from the tech sector
  • 20,600 tech firms in the state
  • A $105,412 median tech occupation wage

Of the states in the top 10, Texas had the second-highest tech sector economic impact, falling only behind California with an impact of $515.6 billion. California also had the highest number of tech firms in the country with a total of 54,303.

Vermont was reported to have embraced remote working the most, with 63.05 remote jobs posted per 100,000 residents. Maryland had the highest average download speeds of 506.7 Mbps. And tech workers in Washington were reported to earn the highest median tech occupation wage of $124,653.

The United States did not rank on Tipalti's list of countries with the most promising digital economies. The city-state, which could "dominate the digital landscape in the near future," according to the report, had $193.93 billion in total tech exports in 2020.

On a late-2022 report, Houston and Texas also ranked high among regions to launch a startup. Houston ranked as ninth, falling just behind Dallas at No. 8, on a list from the 42Floors real estate website of the top spots for new entrepreneurs. Around that same time, Job search platform Lensa also ranked Texas as the best state to launch a startup.
From amenities to flexibility, here's what tech companies need to prioritize in a working environment to stay competitive. Courtesy of HOK

Tech companies need flexible and personalized workplaces to stay competitive, according to this Houston interior design expert

Guest column

Nowhere is the rapid pace of change more apparent than in the tech sector. Fierce competition for talent, an evolving regulatory environment, and mounting privacy and data security challenges confront both well-established tech leaders and startups, forcing them to continuously adapt and innovate.

Companies that succeed in this hyper-competitive market have two things in common: workforces and workspaces that can pivot to address new demands and business models. In a recent report titled HOK Forward: Tech Workplace Takes Center Stage, HOK explored the impact tech industry challenges are having on the office space and examined design solutions that can make these spaces more responsive and successful.

The report found that workplace flexibility is key when it comes to spurring innovation and collaboration. So too is personalization. Each company's ideal environment should reflect its culture, work style, mobility profiles, and business goals and be continually re-evaluated as the organization grows.

Five workplace trends that are gaining popularity in the tech sector include:

  • Activity-Based Workplaces (ABW) – This office concept encourages movement and empower people to select the right space for the job at hand. ABW environments are typically designed to serve four major work functions: solo work, collaboration, learning, and socializing and rejuvenation. These spaces work nicely for organizations that are market-oriented in organizational structure.
  • Neighborhood-based Choice Environments (NCE) – A variation of the ABW model, these spaces create a neighborhood or home for teams to operate out of while still allowing people to have access to a variety of work settings. These spaces are ideal for organizations that are team-based and mobile, but seek to build community.
  • Agile Environments – Scrum spaces where project-based teams from different business groups or departments can gather to collaborate on special projects. These spaces are helpful for team-based organizations that desire belonging and community, as they are highly interactive and collaborative.
  • Maker Environments for Mobile Occupants (MEMO) – These spaces are emerging in sectors where rapid development is key. They encourage experimentation and group work in entrepreneurial environments with flat organizational structures.
  • Immersive Environments – These spaces pull the best lessons learned from ABW, NCE, agile environments and MEMO and tailor them to meet the specific needs of a company to create custom spaces.

These creative approaches meld the needs of an evolving workforce with the needs of the organization. But attracting talent extends far beyond the work styles accommodated. So, how can tomorrow's tech workplace attract and retain top talent?

Amenities play a critical role. Amenity offerings should be diverse and speak to the culture of an organization. Nap pods, wellness rooms, medical clinics and maker spaces are benefits gaining popularity in the tech industry and beyond. These amenities speak to a workforce that values convenience, works hard and finds inspiration in unique ways.

Smart workplaces are gaining popularity in the technology sector. Complete with multiple sensors that track office use—such as how often a space is used and the peak times of activity within a communal space—this advanced technology can help building owners and operators optimize a space and better understand which kinds of environments are in demand.

In addition to leveraging data, tech workplaces are on the cusp of merging the digital realm with physical space. This move towards seamless technology that anticipates behavior and needs and creates immersive experiences has the potential to transform the work experience. At the center of this evolution should be a commitment to engaging, equipping, and empowering individuals to excel, which requires developing flexible, technology-infused space solutions that accommodate a growing diversity of work styles, preferences and personalities.

The tech industry's increased focus on the human experience—from amenities to immersive technology—can be applied to workplaces in other sectors. While the next big technological advancement isn't set in stone, one thing is certain: Companies that wish to remain competitive and responsive in the future will need workplaces with the flexibility and personalization that allow their people to gather, connect, innovate, and simply be their best.

------

Amy English is the director of interiors for HOK.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

How a Houston company is fighting anxiety, insomnia & Alzheimer’s through waveforms

mental health

A Houston-based company is taking a medicine-free approach to target brain neurologically associated with mental illness.

Nexalin Technology’s patented, FDA-cleared frequency-based waveform targets key centers of the midbrain to support the normalization of neurochemicals through a process known as Transcranial Alternating Current Stimulation (tACS). Delivered via a non-invasive device, the treatment gently stimulates the hypothalamus and midbrain, helping to “reset networks associated with symptoms” of anxiety and insomnia. Early clinical evidence suggests this approach can promote healthier brain function and improved sleep.

Through its recently appointed scientific advisory board (SAB), Nexalin also aims to target Alzheimer’s disease with a clinical development pipeline supported by published data and internal data from studies involving its proprietary DIFS technology. Nexalin’s Gen-2 SYNC and Gen-3 Halo headset delivers the DIFS, which is a waveform that can penetrate deep brain structures implicated in cognitive decline and mental illness.

The board includes experts in neurology, neuroimaging and neurodegenerative diseases with Dr. Mingxiong Huang, Dr. David Owens, and Dr. Abe Scheer coming on board. Nexalin plans to initiate new Alzheimer’s-focused clinical studies in the Q3 2025 by incorporating cognitive testing, imaging biomarkers, and guided metrics to assess treatment efficacy and neural activation.

“I am excited to work alongside Nexalin’s leadership and fellow SAB members to help guide the next generation of non-invasive neuromodulation therapies,” Huang said in a news release. “The intersection of neuroimaging, brain stimulation, and clinical science holds enormous potential for treating neurodegenerative disease.”

Recently, Nexalin’s proprietary neurostimulation device moved forward with a clinical trial that evaluated its treatment of anxiety disorders and chronic insomnia in Brazil. The first of Nexalin’s Gen-2 15-milliamp neurostimulation devices was shipped to São Paulo, Brazil, and the study will be conducted at the Instituto de Psiquiatria University Hospital (IPq-HCFMUSP). The shipments aim to support the launch of a Phase II clinical trial in adult patients suffering from anxiety and insomnia. The Nexalin Gen-2 15-milliamp neurostimulation device has also been approved in China, Brazil and Oman. Its Gen 1 device first received FDA clearance in 2003, according to the company's website.

The company also enrolled the first patients in its clinical trial at the University of California, San Diego, in collaboration with the VA San Diego Healthcare System for its Nexalin HALO, which looks to treat mild traumatic brain injury and post-traumatic stress disorder in military personnel and the civilian population.

Nexalin previously raised $5 million through a

public stock offering.

Houston innovation hub announces first cohort for energy-focused accelerator

Powering Up

Energytech Nexus, a Houston-based hub for energy startups, has named its inaugural cohort of 14 companies for the new COPILOT accelerator.

COPILOT partners with Browning the Green Space, a nonprofit that promotes diversity, equity and inclusion (DEI) in the clean energy and climatech sectors. The Wells Fargo Innovation Incubator (IN²) at the National Renewable Energy Laboratory backs the COPILOT accelerator.

The eight-month COPILOT program offers mentorship, training and networking for startups. Program participants will be tasked with developing pilot projects for their innovations.

Two Houston startups are members of the first COPILOT class:

  • GeoFuels, housed at Houston’s Greentown Labs, has come up with a novel approach to hydrogen production that relies on geothermal power and methane decomposition.
  • PolyQor, which converts plastic waste into eco-friendly construction materials. Its flagship EcoGrete product is an additive for concrete that enhances its properties while reducing carbon emissions. PolyQor’s headquarters is at Houston’s Greentown Labs.

Other members of the COPILOT cohort are:

  • Birmingham, Alabama-based Accelerate Wind, developer of a wind turbine for commercial buildings.
  • Ann Arbor, Michigan-based Aquora Biosystems, which specializes in organic waste biorefineries.
  • Phoenix-based EarthEn Energy, a developer of technology for thermo-mechanical energy storage.
  • New York City-based Electromaim, which installs small hydro-generators in buildings’ water systems.
  • Chandler, Arizona-based EnKoat, an advanced materials company whose flagship product, the IntelliKoat System, is a patented two-layer thermal and weather barrier roof coating for flat and low-slope commercial buildings.
  • Calgary, Canada-based Harber Coatings, which manufactures electroless nickel coating and electroless nickel plating.
  • Dallas-based Janta Power, which designs and makes 3D solar towers.
  • Miami-based NanoSieve, a developer of gas remediation technology.
  • Palo Alto, California-based Popper Power, which has developed a platform that turns streetlight networks into resilient, maintenance-free distributed charging infrastructure.
  • Buffalo, New York-based Siva Powers America, developer of small wind turbines for farms, utility companies and others with annual energy needs of 300,000 to 2 million kilowatt-hours.
  • Los Angeles-based Thermoshade, which specializes in cooling panels for outdoor environments.
  • Waukesha, Wisconsin-based V-Glass, Inc., developer of a vacuum-insulated glass for affordable high-efficiency windows.

“These startups reflect the future of energy access and resilience innovation,” said Juliana Garaizar, founding partner of Energytech Nexus. “By connecting them directly with partners through COPILOT, we’re helping them overcome the ‘pilot gap’ to build solutions that scale.”

The startups will run pilot projects along the Gulf Coast for their inventions.

Rice University's top innovation exec leaving for new role at UVA

moving on

Paul Cherukuri, Rice University's top innovation executive, responsible for some of Rice’s major innovative projects like the Rice BioTech LaunchPad and Rice Nexus, will leave the university next month to accept a position at the University of Virginia.

Cherukuri, Rice’s first vice president for innovation and chief innovation officer, will become the University of Virginia’s Donna and Richard Tadler University Professor of Entrepreneurship and the school's first chief innovation officer, according to a release from Rice. Cherukuri, who has served for more than 10 years at Rice, plans to depart his current position on Sept. 30.

Adrian Trömel, associate vice president for innovation strategy and investments at Rice, will serve as interim vice president for innovation and chief innovation officer after Cherukuri departs, and as the university starts an international search for his replacement.

“We appointed Paul to build an ambitious and high-functioning innovation operation, and he has succeeded remarkably in short order,” Rice President Reginald DesRoches said in the release. “In every area, from technology translation and startup creation to commercialization and entrepreneurship training, he has led the effort to vastly improve our structure, operations and relationships. He has contributed immensely both to our strategies and their implementation across numerous areas, and we’ll miss him greatly.”

Cherukuri is a physicist, chemist and medical technology entrepreneur, and has been a member of DesRoches’ leadership team since 2022. Cherukuri served as executive director of Rice’s Institute of Biosciences and Bioengineering from 2016 to 2022, where he helped in the development of interdisciplinary translational research partnerships with federal and corporate agencies. His work helped earn nearly $37 million in funding for accelerating the development of new technologies into commercial products. In the energy transition field, Cherukuri led a $12.5 million partnership with Woodside Energy to transform greenhouse gases into advanced nanomaterials for next-generation batteries and transistors.

Initiatives the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion; were all launched under Cherukuri’s leadership. With his work at the Ion, Cherukuri also led the announcement of a partnership with North America’s largest climate tech incubator, Greentown Labs.

“I am proud of the relentless innovative spirit we have built for Rice in Houston and around the world,” Cherukuri said in the release. “I look forward to bringing new energy and vision to UVA’s efforts in this critical space for our country, its success and future.”