This week's roundup of Houston innovators includes Taylor Anne Adams of Rice University, Kelly Adels Hess of CompuCycle, and Tatiana Fofanova of Koda Health. Photos courtesy

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a podcast with an innovation leader from Rice University, the CEO of a tech recycling company, and a startup founder with fresh funding.

Taylor Anne Adams, head of venture acceleration at Lilie

Taylor Anne Adams is working to support Rice University's most ambitious entrepreneurs. Photo courtesy of Lilie

Rice University can barely keep up with the interest of students in entrepreneurial classes and programming — even in the summer.

The university's Liu Idea Lab for Innovation and Entrepreneurship offers around 30 classes a year and over a dozen co-curricular programs — all focused on supporting student entrepreneurs.

"There is a huge desire for this across the campus," Taylor Anne Adams, head of venture acceleration at Lilie, says on the Houston Innovators Podcast. "Our class enrollment has just continued to skyrocket, and we've had to add on more classes and programs and that still seems to not be enough." Continue reading.

Kelly Hess, CEO of CompuCycle

Kelly Hess leads CompuCycle, a Houston-based company focused on electronics recycling. Courtesy of CompuCycle

An innovative Houston company focused on sustainable tech recycling has expanded.

CompuCycle describes its unique Plastics Recycling System as the first and only certified, single solution e-waste recycling business. The company's unique process can now break down discarded technology products into single polymers that can then be reused in the manufacturing process.

“Properly managing all components of electronics is a cornerstone of sustainability and environmental responsibility,” Kelly Adels Hess, CEO of CompuCycle, says in a news release. “Making single polymer plastics that original equipment manufacturers (OEMs) can reuse to produce new electronics or other products, while adhering to international recycling standards, is a gamechanger for domestic companies and those that need their plastics shipped globally.” Continue reading.

Tatiana Fofanova, co-founder and CEO of Koda Health

Tatiana Fofanova, co-founder and CEO of Koda, joined the Houston Innovators Podcast to discuss her company's growth. Image via LinkedIn

Koda Health achieved a successful oversubscription of additional seed round funding thanks to the participation of AARP, Memorial Hermann Health System, and the Texas Medical Center Venture Fund. The total amount raised was undisclosed, and the round was led by Austin-based Ecliptic Capital.

The tech platform improves planning for serious illness treatment and end-of-life care using a cloud-based advance care planning, or ACP, platform that pairs with in-house support. Essentially, it allows patients to do their planning ahead and make sure that their wishes are actually put into action. According to Koda Health, this results in an average of $9,500 saved per-patient, as well as improved health outcomes.

"If we’re looking at speed of market adoption, it’s clear that Koda Health is at the forefront of a crucial transformation in Advance Care Planning," says Tatiana Fofanova, PhD, CEO of Koda Health, in a press release. “In just a few years, we’ve built out a product that now serves well over 700,000 patients nationwide for industry giants like Cigna, Privia and Houston Methodist.” Continue reading.

Building a circular economy for electronics requires attention to detail in the areas of design, buyback, or return systems, advanced recycling and recapturing, durability and repair, and urban mining. Christina Morillo/Pexels

Houston expert shares tip for developing a circular economy within your company's tech

Guest column

Many organizations are interested in building a circular economy into their business model but aren't sure what steps to take to achieve this goal. I've worked in the technology industry for over 20 years, helping customers across all industries navigate the processes of buyback, recycling, and repair in order to create sustainable and profitable solutions to reduce e-waste.

The world produces 40 million tons of e-waste annually, and only 20 percent of that is being disposed of properly. A circular economy is a system in which all materials and components are kept at their highest value and where e-waste is essentially designed out of the system.

Building a circular economy for electronics requires attention to detail in the areas of design, buyback, or return systems, advanced recycling and recapturing, durability and repair, and urban mining.

Below, I'll discuss some key building blocks for implementing an effective and efficient circular economy.

Invest in technology that will last

Longevity is essential to maintaining sustainable products, and that is easily achievable through repair and refurbishment services. Upgrading or reworking existing equipment can save you time and money by enhancing its marketability or extending its useful life.

Rework service providers can replace components inside servers or PCs and rebuild them with new parts to meet your requirements. These services can boost your operations' speed or improve your servers' or PCs' performance through upgrading, while also saving your organization money by not having to purchase all-new equipment.

Recover value through the secondary market

When equipment must be replaced or retired, many electronic devices can be remarketed, either as whole products or individual parts. This system not only keeps electronics in use and out of landfills — it can also serve as an additional revenue stream for your organization.

Finding the right IT asset disposition partner is crucial for maximizing your return on investment. It can pay dividends to provide high-exposure opportunities to a vast network of customers through a mix of online sales, e-commerce tools, and inside sales when selling your retired equipment.

Utilize advanced recycling and recapturing programs

Retired electronics that are not remarketable can be collected and have their components reintegrated into new products, creating a closed-loop production system. ITAD partners who are certified to recognized green standards, such as R2 or e-Stewards, can ensure that IT equipment that no longer has value will be responsibly recycled.

No matter what industry you're in, a qualified ITAD partner can help optimize your organization and support your goals. From data centers to server rooms and beyond, sustainable solutions are available to manage the equipment you need to retire in compliance with all regulatory guidelines.

------

Ed Wooten is Smith's director of ITAD, or IT asset disposition.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”

Axiom Space wins NASA contract for fifth private mission, lands $350M in financing

ready for takeoff

Editor's note: This story has been updated to include information about Axiom's recent funding.

Axiom Space, a Houston-based space infrastructure company that’s developing the first commercial space station, has forged a deal with NASA to carry out the fifth civilian-staffed mission to the International Space Station.

Axiom Mission 5 is scheduled to launch in January 2027, at the earliest, from NASA’s Kennedy Space Center in Florida. The crew of non-government astronauts is expected to spend up to 14 days docked at the International Space Station (ISS). Various science and research activities will take place during the mission.

The crew for the upcoming mission hasn’t been announced. Previous Axiom missions were commanded by retired NASA astronauts Michael López-Alegría, the company’s chief astronaut, and Peggy Whitson, the company’s vice president of human spaceflight.

“All four previous [Axiom] missions have expanded the global community of space explorers, diversifying scientific investigations in microgravity, and providing significant insight that is benefiting the development of our next-generation space station, Axiom Station,” Jonathan Cirtain, president and CEO of Axiom, said in a news release.

As part of Axiom’s new contract with NASA, Voyager Technologies will provide payload services for Axiom’s fifth mission. Voyager, a defense, national security, and space technology company, recently announced a four-year, $24.5 million contract with NASA’s Johnson Space Center in Houston to provide mission management services for the ISS.

Axiom also announced today, Feb. 12, that it has secured $350 million in a financing round led by Type One Ventures and Qatar Investment Authority.

The company shared in a news release that the funding will support the continued development of its commercial space station, known as Axiom Station, and the production of its Axiom Extravehicular Mobility Unit (AxEMU) under its NASA spacesuit contract.

NASA awarded Axiom a contract in January 2020 to create Axiom Station. The project is currently underway.

"Axiom Space isn’t just building hardware, it’s building the backbone of humanity’s next era in orbit," Tarek Waked, Founding General Partner at Type One Ventures, said in a news release. "Their rare combination of execution, government trust, and global partnerships positions them as the clear successor-architect for life after the ISS. This is how the United States continues to lead in space.”

Houston edtech company closes oversubscribed $3M seed round

fresh funding

Houston-based edtech company TrueLeap Inc. closed an oversubscribed seed round last month.

The $3.3 million round was led by Joe Swinbank Family Limited Partnership, a venture capital firm based in Houston. Gamper Ventures, another Houston firm, also participated with additional strategic partners.

TrueLeap reports that the funding will support the large-scale rollout of its "edge AI, integrated learning systems and last-mile broadband across underserved communities."

“The last mile is where most digital transformation efforts break down,” Sandip Bordoloi, CEO and president of TrueLeap, said in a news release. “TrueLeap was built to operate where bandwidth is limited, power is unreliable, and institutions need real systems—not pilots. This round allows us to scale infrastructure that actually works on the ground.”

True Leap works to address the digital divide in education through its AI-powered education, workforce systems and digital services that are designed for underserved and low-connectivity communities.

The company has created infrastructure in Africa, India and rural America. Just this week, it announced an agreement with the City of Kinshasa in the Democratic Republic of Congo to deploy a digital twin platform for its public education system that will allow provincial leaders to manage enrollment, staffing, infrastructure and performance with live data.

“What sets TrueLeap apart is their infrastructure mindset,” Joe Swinbank, General Partner at Joe Swinbank Family Limited Partnership, added in the news release. “They are building the physical and digital rails that allow entire ecosystems to function. The convergence of edge compute, connectivity, and services makes this a compelling global infrastructure opportunity.”

TrueLeap was founded by Bordoloi and Sunny Zhang and developed out of Born Global Ventures, a Houston venture studio focused on advancing immigrant-founded technology. It closed an oversubscribed pre-seed in 2024.