This week's roundup of Houston innovators includes Taylor Anne Adams of Rice University, Kelly Adels Hess of CompuCycle, and Tatiana Fofanova of Koda Health. Photos courtesy

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a podcast with an innovation leader from Rice University, the CEO of a tech recycling company, and a startup founder with fresh funding.

Taylor Anne Adams, head of venture acceleration at Lilie

Taylor Anne Adams is working to support Rice University's most ambitious entrepreneurs. Photo courtesy of Lilie

Rice University can barely keep up with the interest of students in entrepreneurial classes and programming — even in the summer.

The university's Liu Idea Lab for Innovation and Entrepreneurship offers around 30 classes a year and over a dozen co-curricular programs — all focused on supporting student entrepreneurs.

"There is a huge desire for this across the campus," Taylor Anne Adams, head of venture acceleration at Lilie, says on the Houston Innovators Podcast. "Our class enrollment has just continued to skyrocket, and we've had to add on more classes and programs and that still seems to not be enough." Continue reading.

Kelly Hess, CEO of CompuCycle

Kelly Hess leads CompuCycle, a Houston-based company focused on electronics recycling. Courtesy of CompuCycle

An innovative Houston company focused on sustainable tech recycling has expanded.

CompuCycle describes its unique Plastics Recycling System as the first and only certified, single solution e-waste recycling business. The company's unique process can now break down discarded technology products into single polymers that can then be reused in the manufacturing process.

“Properly managing all components of electronics is a cornerstone of sustainability and environmental responsibility,” Kelly Adels Hess, CEO of CompuCycle, says in a news release. “Making single polymer plastics that original equipment manufacturers (OEMs) can reuse to produce new electronics or other products, while adhering to international recycling standards, is a gamechanger for domestic companies and those that need their plastics shipped globally.” Continue reading.

Tatiana Fofanova, co-founder and CEO of Koda Health

Tatiana Fofanova, co-founder and CEO of Koda, joined the Houston Innovators Podcast to discuss her company's growth. Image via LinkedIn

Koda Health achieved a successful oversubscription of additional seed round funding thanks to the participation of AARP, Memorial Hermann Health System, and the Texas Medical Center Venture Fund. The total amount raised was undisclosed, and the round was led by Austin-based Ecliptic Capital.

The tech platform improves planning for serious illness treatment and end-of-life care using a cloud-based advance care planning, or ACP, platform that pairs with in-house support. Essentially, it allows patients to do their planning ahead and make sure that their wishes are actually put into action. According to Koda Health, this results in an average of $9,500 saved per-patient, as well as improved health outcomes.

"If we’re looking at speed of market adoption, it’s clear that Koda Health is at the forefront of a crucial transformation in Advance Care Planning," says Tatiana Fofanova, PhD, CEO of Koda Health, in a press release. “In just a few years, we’ve built out a product that now serves well over 700,000 patients nationwide for industry giants like Cigna, Privia and Houston Methodist.” Continue reading.

Building a circular economy for electronics requires attention to detail in the areas of design, buyback, or return systems, advanced recycling and recapturing, durability and repair, and urban mining. Christina Morillo/Pexels

Houston expert shares tip for developing a circular economy within your company's tech

Guest column

Many organizations are interested in building a circular economy into their business model but aren't sure what steps to take to achieve this goal. I've worked in the technology industry for over 20 years, helping customers across all industries navigate the processes of buyback, recycling, and repair in order to create sustainable and profitable solutions to reduce e-waste.

The world produces 40 million tons of e-waste annually, and only 20 percent of that is being disposed of properly. A circular economy is a system in which all materials and components are kept at their highest value and where e-waste is essentially designed out of the system.

Building a circular economy for electronics requires attention to detail in the areas of design, buyback, or return systems, advanced recycling and recapturing, durability and repair, and urban mining.

Below, I'll discuss some key building blocks for implementing an effective and efficient circular economy.

Invest in technology that will last

Longevity is essential to maintaining sustainable products, and that is easily achievable through repair and refurbishment services. Upgrading or reworking existing equipment can save you time and money by enhancing its marketability or extending its useful life.

Rework service providers can replace components inside servers or PCs and rebuild them with new parts to meet your requirements. These services can boost your operations' speed or improve your servers' or PCs' performance through upgrading, while also saving your organization money by not having to purchase all-new equipment.

Recover value through the secondary market

When equipment must be replaced or retired, many electronic devices can be remarketed, either as whole products or individual parts. This system not only keeps electronics in use and out of landfills — it can also serve as an additional revenue stream for your organization.

Finding the right IT asset disposition partner is crucial for maximizing your return on investment. It can pay dividends to provide high-exposure opportunities to a vast network of customers through a mix of online sales, e-commerce tools, and inside sales when selling your retired equipment.

Utilize advanced recycling and recapturing programs

Retired electronics that are not remarketable can be collected and have their components reintegrated into new products, creating a closed-loop production system. ITAD partners who are certified to recognized green standards, such as R2 or e-Stewards, can ensure that IT equipment that no longer has value will be responsibly recycled.

No matter what industry you're in, a qualified ITAD partner can help optimize your organization and support your goals. From data centers to server rooms and beyond, sustainable solutions are available to manage the equipment you need to retire in compliance with all regulatory guidelines.

------

Ed Wooten is Smith's director of ITAD, or IT asset disposition.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.