This week's roundup of Houston innovators includes Taylor Anne Adams of Rice University, Kelly Adels Hess of CompuCycle, and Tatiana Fofanova of Koda Health. Photos courtesy

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a podcast with an innovation leader from Rice University, the CEO of a tech recycling company, and a startup founder with fresh funding.

Taylor Anne Adams, head of venture acceleration at Lilie

Taylor Anne Adams is working to support Rice University's most ambitious entrepreneurs. Photo courtesy of Lilie

Rice University can barely keep up with the interest of students in entrepreneurial classes and programming — even in the summer.

The university's Liu Idea Lab for Innovation and Entrepreneurship offers around 30 classes a year and over a dozen co-curricular programs — all focused on supporting student entrepreneurs.

"There is a huge desire for this across the campus," Taylor Anne Adams, head of venture acceleration at Lilie, says on the Houston Innovators Podcast. "Our class enrollment has just continued to skyrocket, and we've had to add on more classes and programs and that still seems to not be enough." Continue reading.

Kelly Hess, CEO of CompuCycle

Kelly Hess leads CompuCycle, a Houston-based company focused on electronics recycling. Courtesy of CompuCycle

An innovative Houston company focused on sustainable tech recycling has expanded.

CompuCycle describes its unique Plastics Recycling System as the first and only certified, single solution e-waste recycling business. The company's unique process can now break down discarded technology products into single polymers that can then be reused in the manufacturing process.

“Properly managing all components of electronics is a cornerstone of sustainability and environmental responsibility,” Kelly Adels Hess, CEO of CompuCycle, says in a news release. “Making single polymer plastics that original equipment manufacturers (OEMs) can reuse to produce new electronics or other products, while adhering to international recycling standards, is a gamechanger for domestic companies and those that need their plastics shipped globally.” Continue reading.

Tatiana Fofanova, co-founder and CEO of Koda Health

Tatiana Fofanova, co-founder and CEO of Koda, joined the Houston Innovators Podcast to discuss her company's growth. Image via LinkedIn

Koda Health achieved a successful oversubscription of additional seed round funding thanks to the participation of AARP, Memorial Hermann Health System, and the Texas Medical Center Venture Fund. The total amount raised was undisclosed, and the round was led by Austin-based Ecliptic Capital.

The tech platform improves planning for serious illness treatment and end-of-life care using a cloud-based advance care planning, or ACP, platform that pairs with in-house support. Essentially, it allows patients to do their planning ahead and make sure that their wishes are actually put into action. According to Koda Health, this results in an average of $9,500 saved per-patient, as well as improved health outcomes.

"If we’re looking at speed of market adoption, it’s clear that Koda Health is at the forefront of a crucial transformation in Advance Care Planning," says Tatiana Fofanova, PhD, CEO of Koda Health, in a press release. “In just a few years, we’ve built out a product that now serves well over 700,000 patients nationwide for industry giants like Cigna, Privia and Houston Methodist.” Continue reading.

Building a circular economy for electronics requires attention to detail in the areas of design, buyback, or return systems, advanced recycling and recapturing, durability and repair, and urban mining. Christina Morillo/Pexels

Houston expert shares tip for developing a circular economy within your company's tech

Guest column

Many organizations are interested in building a circular economy into their business model but aren't sure what steps to take to achieve this goal. I've worked in the technology industry for over 20 years, helping customers across all industries navigate the processes of buyback, recycling, and repair in order to create sustainable and profitable solutions to reduce e-waste.

The world produces 40 million tons of e-waste annually, and only 20 percent of that is being disposed of properly. A circular economy is a system in which all materials and components are kept at their highest value and where e-waste is essentially designed out of the system.

Building a circular economy for electronics requires attention to detail in the areas of design, buyback, or return systems, advanced recycling and recapturing, durability and repair, and urban mining.

Below, I'll discuss some key building blocks for implementing an effective and efficient circular economy.

Invest in technology that will last

Longevity is essential to maintaining sustainable products, and that is easily achievable through repair and refurbishment services. Upgrading or reworking existing equipment can save you time and money by enhancing its marketability or extending its useful life.

Rework service providers can replace components inside servers or PCs and rebuild them with new parts to meet your requirements. These services can boost your operations' speed or improve your servers' or PCs' performance through upgrading, while also saving your organization money by not having to purchase all-new equipment.

Recover value through the secondary market

When equipment must be replaced or retired, many electronic devices can be remarketed, either as whole products or individual parts. This system not only keeps electronics in use and out of landfills — it can also serve as an additional revenue stream for your organization.

Finding the right IT asset disposition partner is crucial for maximizing your return on investment. It can pay dividends to provide high-exposure opportunities to a vast network of customers through a mix of online sales, e-commerce tools, and inside sales when selling your retired equipment.

Utilize advanced recycling and recapturing programs

Retired electronics that are not remarketable can be collected and have their components reintegrated into new products, creating a closed-loop production system. ITAD partners who are certified to recognized green standards, such as R2 or e-Stewards, can ensure that IT equipment that no longer has value will be responsibly recycled.

No matter what industry you're in, a qualified ITAD partner can help optimize your organization and support your goals. From data centers to server rooms and beyond, sustainable solutions are available to manage the equipment you need to retire in compliance with all regulatory guidelines.

------

Ed Wooten is Smith's director of ITAD, or IT asset disposition.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”