UH has launched its Tech Map, which visualizes startup and innovation activity across the city. Photo via Getty Images

The greater Houston area spans 9,444 square miles — an area larger than the entire state of New Jersey — and the question was never if Houston's sprawl was going to affect interaction between startups, resources, and opportunities, but how to overcome these physical challenges with digital solutions. The latest of which has launched out of the University of Houston's Technology Bridge.

The Tech Map — an interactive, embeddable visualization that takes data about startups and other innovation players and compiles it into a map of entrepreneurial activity in the Houston area — has officially launched with hundreds of startups represented already.

"This kind of tool — it really tells you where innovation is happening, it's not just in the startup development organizations," says Lindsay Lewis, executive director of communications for the UH Division of Research. "It's amazing to see that it's happening all over the city."

The tool, which is free to embed and available to anyone, is already live on Houston Exponential's homepage and the city of Houston's Innovation Portal. It's comprised of data submitted by startup development organizations, self-submitted information, and research by the Tech Bridge's team.

To be represented on the map, click here.


Lewis stresses the importance of creating the tool in a collaborative way, which is why bringing on partners and their databases was so key. The tool isn't designed in Cougar Red or predominantly feature UH-based startups or anything. The Tech Map isn't meant to rock the boat of what any other organization is doing, rather just visually represent the goings on.

"For us, it was a balance between trying to show the story of Houston and where innovation is happening and aggregating, but what we didn't want to do was be a replacement. We wanted this to be a resource for an individual starting point," says Chris Taylor, executive director for the Tech Bridge. "The biggest challenge for most people is you really don't know where to start."

This year has been one for digital tools focused on better portraying Houston's innovation ecosystem. This summer, Houston Exponential launched the HTX TechList to virtually connect startups, mentors, investors, and other movers and shakers in Houston. The two entities are collaborative — HTX TechList's data is even involved in the Tech Map.

"There was a need for connection," Taylor says. "Since 2013 when I got here, that's always been a challenge and a hurdle. How do we connect all these different stakeholders in a way that's meaningful."

While the map is launched and ready to be used, it's only the beginning for it as it grows its data and adds new features.

"We're not done with this map — this is just the 1.0 version," Lewis says. "We're meeting to talk about next-step functionalities and where we are going to take it."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.