It's only going to get hotter in Houston — can the grid take it? Switching to solar is a way to avoid having to worry about that question, says this expert. Photo courtesy of Freedom Solar

You know the old adage: "If you don't like the weather here, wait five minutes." Texas weather is not just unpredictable; it can be downright bipolar. I don't need to remind you of the knockout punch Old Man Winter delivered last February, even to parts of the state where hard freezes are few and a "snow event" usually amounts to a dusting. It will be a long time before Texans forget spending a week without power in single-digit temperatures — huddled together in their homes under mountains of blankets — with no heat, no way to bathe or cook, and no escape.

The massive power outages of Valentine's Day week spurred public outrage and a full-throated demand that state leaders take decisive steps to make Texas' electric grid sustainable. The legislature was only a month into its 140-day regular session at the time, but still failed to do anything substantial to fix the grid before adjourning May 31.

Now — well ahead of the hottest days of summer — Texans are wondering why the Electric Reliability Council of Texas (ERCOT) is already asking them to set their thermostats at 78 degrees, turn off lights, avoid using their ovens or doing laundry in the evenings, and otherwise conserve energy. It was ERCOT's second such call since April. Some local energy companies have recommended setting thermostats even higher, and local rolling blackouts have continued in Dallas, Houston, and elsewhere in the state throughout the months of June and July. That may be fine for some people during Texas' scorching summer heat, but for others, it is untenable. For the elderly or infirmed, it could be deadly.

Experts have warned the grid is unreliable, the system is strained, and homeowners and businesses hover at near-constant risk for blackouts, unless the state does more to weatherize the grid, bring more generators back online, and provide more emergency backup power. Meanwhile, when temperatures hit triple digits and stay there for days, the blackout risks will skyrocket.

But there is one obvious solution to grid instability that will enable Texans to keep their homes and businesses comfortably cool during the hot summer months ahead, without setting their thermostats higher or timing their activities to government guidelines. Widespread distributed generation of solar energy, instead of the current emphasis on remotely located utility-scale solar, would provide a highly effective, long-term solution to decreasing strain on the ERCOT power grid.

That means dramatically increasing the number of solar installations on residential and commercial properties statewide. Consider the distance and infrastructure required to bring power from a West Texas solar farm to the state's big cities. That's not only a costly undertaking, it exposes the system to many vulnerabilities along the way. It makes more sense to install solar panels on-site, behind the meter, and pair them with storage for backup power.

The logic is simple: Increasing the number of homes and businesses with on-site solar power would decrease the burden on the grid and help insulate it against failure. Further, by installing home batteries such as the Tesla Powerwall for backup power, residents can control their own power supply and ensure its reliability, even during extreme weather events—summer or winter.

These technologies are cost-efficient and readily available today. A few months ago, Congress extended the 26 percent federal solar investment tax credit (ITC) — which also applies to batteries paired with solar — through 2021 (dropping to 22 percent in 2022), making the move to solar and backup power even more sensible.

State leaders have tried to lay the blame for last winter's power outages on renewable energy. But failures of natural gas power plants, not renewable generators, caused the grid failures that led to those deadly blackouts.

On July 6, months after declaring "everything that needed to be done was done to fix the power grid in Texas," Governor Abbott ordered the PUC to take steps to overhaul the state's electric system. But the solutions he's offering—like constructing new coal, gas, and nuclear power plants and building their transmission lines faster—are giveaways to the fossil fuel industry and will take a long time to complete. Texas needs reliable power NOW.

Meanwhile, state officials are increasingly emphasizing conserving power during extreme temperatures, which suggests they don't even believe their assurances that no more blackouts lie ahead. On-site solar power is the obvious solution, both today and for the long-term health of our rapidly growing state and rapidly warming planet.

------

Bret Biggart is CEO of Austin-based Freedom Solar, the leading turnkey solar energy installer in Texas, providing high-quality, cost-effective, reliable solar solutions for the residential and commercial markets.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”