Researchers created a mathematical model that helps transplant centers make decisions about when to move forward with a matching donor and when to wait. This work can potentially help decision making in other industries. Photo via Getty Images

To wait, or not to wait? That is the question — or at least it might be, if you need a kidney transplant.

Nearly 89,000 Americans with chronic kidney disease are on a waitlist for a new organ, and an estimated 13 people die each day while awaiting a transplant. But there are real costs to matching patients with the first donor that becomes available, just as there are equally real costs to having them wait in hopes of finding a better one.

Recently, Rice Business professor Süleyman Kerimov and colleagues at Stanford University and Northwestern University developed a mathematical model that helps clarify when it's best to match patients to donors as quickly as possible and when it's best to wait.

Their findings, which appear in two papers published in Management Science and Operations Research, respectively, could help optimize all manner of matching markets in which participants seek to connect with potential partners based on mutual compatibility — a sprawling category that encompasses everything from e-commerce platforms to labor markets that match employees with employers.

Kerimov and his colleagues focused on programs that match live kidney donors with people who need transplants. Live donors typically volunteer to give one of their kidneys to a loved one. But biological differences between a donor and their intended recipient can render the pair incompatible.

Kidney exchange programs solve this problem by swapping donors amongst different patient-donor pairs, choreographing a kind of kidney-transplant square dance aimed at finding a compatible partner for every willing donor.

In countries such as Canada and the Netherlands, kidney-matching programs perform a batch of matches every few months (called periodic policies). American programs, meanwhile, tend to perform daily matches (called greedy policies). Both models seek to produce the greatest number of high-quality transplants possible, but they each have advantages and disadvantages.

Less frequent matches in a periodic policy allow more patient-donor pairs to accumulate in the kidney exchange network, creating potential for better matches over time. But this approach risks making some patients sicker as they wait for a better match that might never appear.

Arranging feasible matches as soon as they become available in a greedy policy avoids that predicament. But it means passing up the opportunity to make a potentially better match that could represent the possibility of a longer, healthier life.

Balancing these trade-offs is tricky. There is no way of predicting precisely when a patient-donor pair with a particular set of characteristics will show up at the kidney-exchange network. And in the world of organ transplants, there are no do-overs.

Kerimov and his colleagues have constructed a mathematical model that represents a simplified version of a kidney exchange network.

Within the model, the researchers could dictate which patient-donor pairs could be matched with one another. They can also assign different values to individual matches based on the number of life years they provide. And they can establish the probability that various kinds of patient-donor pairs with particular characteristics might arrive at the network and queue up for a transplant at any given time.

Having set those parameters, the researchers applied different matching policies and compared the results. As it turns out, the answer to whether one should wait or not is: It depends.

To determine which policies generated the best outcomes — i.e., performing matches either daily or periodically — the researchers calculated the difference between the total value in life years that could possibly be generated within the network and the amount generated by a specific policy at a particular point in time. The goal was to keep that number, evocatively dubbed "all-time regret," as small as possible over both the short and long term.

In their first paper, Kerimov and his team explored a complex network in which donor kidneys could be swapped amongst three or more patient-donor pairs. When such multiway matches were possible, the cost of applying a daily-match policy turned out to be onerous. Using all available matches as quickly as possible eliminated the chance of later performing potentially higher-value matches.

Instead, the researchers found they could minimize regret by applying a periodic policy that required waiting for a certain number of patient-donor pairs to arrive before attempting to match them. The model even allowed the team to calculate precisely how long to wait between matchmaking sessions to get the best possible results.

In their second paper, however, the team looked at a simpler network in which kidneys could only be swapped between two donor-patient pairs. Here, their findings contradicted the first: Applying a daily-match policy minimized regret; a periodic matching process yielded no benefit whatsoever.

To their surprise, the researchers discovered they could design a foolproof algorithm for making two-way matches in simple networks. The algorithm employed a ranked list of possible match types; and the researchers found that no matter how many patient-donor pairs of various kinds randomly arrived at the network, the best choice was always simply to perform the highest-ranked match on the list.

In future research, Kerimov hopes to refine the model by feeding it data on real patient-donor pairs that have participated in actual kidney exchange programs. This would allow him to create a more realistic network, more accurately calculate the likelihood that particular kinds of patient-donor pairs will show up, and assign values to matches based not only on life years but also on rarity and difficulty. (Certain blood types and antibody profiles, for example, are rarer or more difficult to match than others.)

But Kerimov already suspects that in a real-world situation, the wisest course of action will be to alternate between periodic and greedy policies as circumstances dictate. In a simple region within a kidney exchange network that only allows for two-way matches, pursuing a greedy policy that involves taking the first match that appears on a fixed menu of options would be the best choice. In a more complex region that allows three-way matches, however, pursuing a periodic matching policy that involves waiting to make rarer and more difficult matches would ultimately offer more patients more years of healthy life.

The benefits of choosing flexibly between greedy and periodic policies should hold for any kind of matching market that can be represented by a network with simpler and more complex regions, such as a logistics system that matches online orders to delivery trucks or a carpooling system that matches passengers with drivers across different parts of a city.

------

This article originally ran on Rice Business Wisdom and was based on research from Süleyman Kerimov, an assistant professor of management – operations management in the Jones Graduate School of Business at Rice University.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston schools shine on annual ranking of top institutions for 2025

best in class

Several Houston elementary and middle schools are at the top of the class when it comes to educating and preparing the next generation for a successful life and career, according to U.S. News & World Report's just-released list of 2025 Elementary and Middle Schools Rankings.

One such school – T.H. Rogers School in Houston ISD – is the No. 8 best middle school in Texas for 2025.

U.S. News ranked over 79,000 public schools on the state and district level using data from the U.S. Department of Education. Schools were analyzed based on their students' proficiencies in mathematics and reading/language arts on state assessments, and tie-breakers were decided based on student-teacher ratios.

Texas' best middle schools for 2025

Three Houston middle schools achieved spots among the top 10 best Texas middle schools for 2025, according to U.S. News.

T.H. Rogers School has a total enrollment of 1,063 students, with 87 percent of the student population scoring "at or above the proficient level" in mathematics, and 90 percent proficiency in reading. The school has a student-teacher ratio of 17:1, with 62 full-time teachers.

T.H. Rogers School also topped the district-wide list as the No. 1 best middle school in HISD.

Houston Gateway Academy - Coral Campus also ranked among the statewide top 10, coming in at No. 9 with a total enrollment of 914 students. U.S. News says 82 percent of HGA students are proficient in math, and 80 percent are proficient in reading.

"Houston Gateway Academy - Coral Campus did better in math and better in reading in this metric compared with students across the state," U.S. News said in the school's profile. "In Texas, 51 percent of students tested at or above the proficient level for reading, and 41 percent tested at or above that level for math."

Right behind HGA to round out the top 10 best Texas middle schools is Houston ISD's Briarmeadow Charter School. This middle school has 600 students, 69 percent of which are proficient in math and 74 percent are proficient reading.

Briarmeadow's student-teacher ratio is 16:1, which is better than the district-wide student-teacher ratio, and it employs 38 full-time teachers.

U.S. News also ranked Briarmeadow as the second best middle school in Houston ISD.

Six additional Houston-area schools ranked among the top 25 best middle schools in Texas, including:

  • No. 18 – Cornerstone Academy, Spring Branch ISD
  • No. 19 – Mandarin Immersion Magnet School, Houston ISD
  • No. 21 – Smith Middle School, Cypress-Fairbanks ISD
  • No. 22 – Seven Lakes Junior High, Katy ISD
  • No. 23 – Houston Gateway Academy
  • No. 25 – Beckendorff Junior High, Katy ISD

The best elementary schools in Texas

Jesus A. Kawas Elementary school in Laredo was crowned the No. 1 elementary school in Texas for 2025, while two Houston-area schools made it into the top 10.Tomball ISD's Creekside Forest Elementary in The Woodlands is the No. 7 best elementary school statewide, boasting 656 students, 42 full-time teachers, and one full-time counselor. Students at this school, which U.S. News designates is situated in a "fringe rural setting," scored 90 percent efficiency in math and 94 percent efficiency in reading.Following one spot behind Creekside Forest in the statewide ranking is Sugar Land's Commonwealth Elementary School in Fort Bend ISD, coming in at No. 8. Commonwealth has a student population of 954 with 55 full-time teachers, and two full-time counselors. The school's student-teacher ratio is 17:1, and 90 percent of students are proficient in math, and 94 percent in reading.U.S. News says student success at Commonwealth is significantly higher than the rest of Fort Bend ISD."In Fort Bend Independent School District, 59 percent of students tested at or above the proficient level for reading, and 47 percent tested at or above that level for math," U.S. News said in Commonwealth's profile. "Commonwealth Elementary [also] did better in math and better in reading in this metric compared with students across the state."Other Houston-area schools that were ranked among the 25 best in Texas are:
  • No. 13 – Bess Campbell Elementary, Sugar Land, Lamar CISD
  • No. 20 – West University Elementary, Houston ISD
  • No. 23 – T.H. Rogers School, Houston ISD
  • No. 25 – Griffin Elementary, Katy ISD

"The 2025 Best Elementary and Middle Schools rankings offer parents a way to evaluate how schools are providing a high-quality education and preparing students for future success," said LaMont Jones, Ed.D., the managing editor for Education at U.S. News. "The data empowers families and communities to advocate for their children’s education. Research continues to indicate that how students perform academically at these early grade levels is a big factor in their success in high school and beyond."

------

This article originally ran on CultureMap.

Rice University launches hub in India to drive education, tech innovation abroad

global mission

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions.

Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.