A unique innovation from the University of Houston has the potential to help stroke victims recover mobility. Photo courtesy of UH

A University of Houston professor has taking a huge step in advancing his game-changing stroke recovery tech.

Jose Luis Contreras-Vidal, the director of the UH BRAIN Center, recently published his work on a noninvasive brain-machine in a summer issue of the journal Sensors. InnovationMap first reported on Contreras-Vidal's technology in 2022, when it was being tested.

Contreras-Vidal's device uses a wireless, mobile dry-electrode headset placed on the scalp to convert electroencephalography (EEG) recordings (or measurements of electrical activity in different parts of the brain) to interface with a closed-loop brain–computer (BCI) and communicate with exoskeleton devices. Together, the technology triggers robotic movement based on the wearer's brain activity.

The technology has potential to boost cortical plasticity after a stroke, which can improve motor skills recovery.

According to a statement from UH, a patent is pending on Contreras-Vidal's BCI algorithm and the self-positioning dry electrode bracket used on the scalp. The technology has also now been validated and tested at the University of Houston.

Contreras-Vidal says the technology makes stroke recovery easier for the user and even possible at home.

“Most commercial EEG-based BCI systems are tethered to immobile processing hardware or require complex programming or set-up, making them difficult to deploy outside of the clinic or laboratory without technical assistance or extensive training," he says in a statement. "A portable and wireless BCI system is highly preferred so it can be used outside lab in clinical and non-clinical mobile applications at home, work, or play.”

Additionally, the technology uses off-the-shelf components and is adjustable to fit about 90 percent of the population, according to UH.

"Current commercial EEG amplifiers and BCI headsets are prohibitively expensive, lack interoperability, or fail to provide a high signal quality or closed-loop operation, which are vital for BCI applications,” Contreras-Vidal adds.

The development of this technology was originally funded in part by an $813,999 grant from the National Science Foundation’s Division of Translational Impacts. UH reports that about 795,000 people in the United States suffer from a stroke annually.

Other leaders in Houston’s medical industry have tapped into innovative ways to treat and rehabilitate stroke patients in recent years. Baylor St. Luke's Hospital began using AI to reduce the time it takes to treat patients who've suffered from a stroke in 2021.

Stroke patients have a new hope for arm rehabilitation thanks to a team from UH. Photo courtesy of UH

Robotic device created at the University of Houston helps stroke patients to rehabilitate

next-gen recovery

Almost 800,000 people in the United States suffer from a stroke annually — and the affliction affects each patient differently. One University of Houston researcher has created a device that greatly improves the lives of patients whose stroke affected motor skills.

UH engineering professor Jose Luis Contreras-Vidal developed a next-generation robotic arm that can be controlled by the user's brainwaves. The portable device uses a brain-computer interface (BCI) developed by Contreras-Vidal. Stroke patient Oswald Reedus, 66, is the first person to use a device of this kind.

Reedus lost the use of his left arm following a stroke that also caused aphasia, or difficulty speaking. While he's been able to recover his ability to speak clearly, the new exoskeleton will help rehabilitate his arm.

When strapped into the noninvasive device, the user's brain activity is translated into motor commands to power upper-limb robotics. As patients like Reedus use the device, more data is collected to improve the experience.

“If I can pass along anything to help a stroke person’s life, I will do it. For me it’s my purpose in life now,” says Reedus in a news release from UH. His mother and younger brother both died of strokes, and Reedus is set on helping the device that can help other stroke patients recover.

Contreras-Vidal, a Hugh Roy and Lillie Cranz Cullen distinguished professor, has led his device from ideation to in-home use, like with Reedus, as well as clinical trials at TIRR Memorial Hermann. The project is funded in part from an $813,999 grant from the National Science Foundation’s newly created Division of Translational Impacts.

"Our project addresses a pressing need for accessible, safe, and effective stroke rehabilitation devices for in-clinic and at-home use for sustainable long-term therapy, a global market size expected to currently be $31 billion," Contreras-Vidal says in the release. "Unfortunately, current devices fail to engage the patients, are hard to match to their needs and capabilities, are costly to use and maintain, or are limited to clinical settings."

Dr. Gerard E. Francisco, chief medical officer and director of the Neuro Recovery Research Center at TIRR Memorial Hermann, is leading the clinical trials for the device. He's also chair and professor in the Department of Physical Medicine and Rehabilitation at McGovern Medical School at UTHealth Houston. He explains that TIRR's partnership with engineering schools such as the Cullen College of Engineering at UH and others around the nation is strategic.

“This is truly exciting because what we know now is there are so many ways we can induce neuroplasticity or how we can boost recovery,” says Francisco in the release. “That collaboration is going to give birth to many of these groundbreaking technologies and innovations we can offer our patients.”

Both parts of the device — a part that attaches to the patient's head and a part affixed to their arm — are noninvasive. Photo courtesy of UH

Baylor St. Luke's Hospital is using a new Bay Area technology to provide treatment to stroke patients. Photo courtesy Baylor St. Luke's

Houston hospital taps artificial intelligence to boost stroke treatment

health tech

For neurologists and neurocritical care providers like Dr. Chethan Rao, medical director of Neuroscience ICU at Baylor St. Luke's Hospital, time is incredibly important when it comes to brain-related recoveries.

"For every minute that you don't treat a patient with a stroke, 2 million nerve cells die. In the normal aging process, you lose about 35,000 cells a year or so," Rao says. "In other words, you age about 10 years every minute you don't get a treatment for stroke."

This is why his team is using new technologies, softwares, and innovation to drastically reduce the time it takes to treat patients who've suffered from a stroke starting from the moment they enter through the doors of their hospital.

One of the latest advancements at Baylor St. Luke's is the adoption of the San Francisco-based artificial intelligence app called Viz.ai across its stroke care teams.

The app received FDA approval in February 2020 and uses deep learning algorithms to analyze CAT scans for suspected large vessel occlusion (LVO) strokes. Baylor purchased the software about a year ago and is the first Houston-area hospital to use artificial intelligence for this type of treatment.

Viz.ai instantly allows doctors to determine salvageable and unsalvageable brain tissue, creating what Dr. Rao describes as a "map" for any potential procedures. Determining the viability of this type of treatment traditionally would take about 15 to 20 minutes, according to Rao.

"That's the reason artificial intelligence and automated technology has become extremely important. Because the more you've reduced the time it's required to make decisions and to provide treatments for stroke, that benefit is humungous for the patient," he says.

Rao says that his team uses the software about every day and has treated roughly 140 stroke patients with guidance from the tool.

Next the hospital aims to connect Viz.ai with additional automated systems it has adopted to speed up processes for stroke patients and manage their care, including TigerConnect for internal HIPAA-approved messaging and Decisio, a Houston-based product that captures key time stamps.

And Rao adds that the hospital is researching ways to extend the use of Viz.ai for select patients—to salvage more brain matter and analyze additional neurological events.

"More exciting things will be coming out of it," he says. "We're also working on helping it analyze aneurysms, not just blockages. Can we locate the bleeds, so that we can create different alert systems and then create different treatment pathways immediately?"

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University's edtech company receives $90M to lead NSF research hub

major collaboration

An educational technology company based out of Rice University has received $90 million to create and lead a research and development hub for inclusive learning and education research. It's the largest research award in the history of the university.

OpenStax received the grant funding from the U.S. National Science Foundation for a five-year project create the R&D hub called SafeInsights, which "will enable extensive, long-term research on the predictors of effective learning while protecting student privacy," reads a news release from Rice. It's the NSF's largest single investment commitment to national sale education R&D infrastructure.

“We are thrilled to announce an investment of $90 million in SafeInsights, marking a significant step forward in our commitment to advancing scientific research in STEM education,” NSF Director Sethuraman Panchanathan says in the release. “There is an urgent need for research-informed strategies capable of transforming educational systems, empowering our nation’s workforce and propelling discoveries in the science of learning.

"By investing in cutting-edge infrastructure and fostering collaboration among researchers and educators, we are paving the way for transformative discoveries and equitable opportunities for learners across the nation.”

SafeInsights is funded through NSF’s Mid-scale Research Infrastructure-2 (Mid-scale RI-2) program and will act as a central hub for 80 partners and collaborating institutions.

“SafeInsights represents a pivotal moment for Rice University and a testament to our nation’s commitment to educational research,” Rice President Reginald DesRoches adds. “It will accelerate student learning through studies that result in more innovative, evidence-based tools and practices.”

Richard Baraniuk, who founded OpenStax and is a Rice professor, will lead SafeInsights. He says he hopes the initiative will allow progress to be made for students learning in various contexts.

“Learning is complex," Baraniuk says in the release. "Research can tackle this complexity and help get the right tools into the hands of educators and students, but to do so, we need reliable information on how students learn. Just as progress in health care research sparked stunning advances in personalized medicine, we need similar precision in education to support all students, particularly those from underrepresented and low-income backgrounds.”

2 Houston startups selected by US military for geothermal projects

hot new recruits

Two clean energy companies in Houston have been recruited for geothermal projects at U.S. military installations.

Fervo Energy is exploring the potential for a geothermal energy system at Naval Air Station Fallon in Nevada.

Meanwhile, Sage Geosystems is working on an exploratory geothermal project for the Army’s Fort Bliss post in Texas. The Bliss project is the third U.S. Department of Defense geothermal initiative in the Lone Star State.

“Energy resilience for the U.S. military is essential in an increasingly digital and electric world, and we are pleased to help the U.S. Army and [the Defense Innovation Unit] to support energy resilience at Fort Bliss,” Cindy Taff, CEO of Sage, says in a news release.

A spokeswoman for Fervo declined to comment.

Andy Sabin, director of the Navy’s Geothermal Program Office, says in a military news release that previous geothermal exploration efforts indicate the Fallon facility “is ideally suited for enhanced geothermal systems to be deployed onsite.”

As for the Fort Bliss project, Michael Jones, a project director in the Army Office of Energy Initiatives, says it’ll combine geothermal technology with innovations from the oil and gas sector.

“This initiative adds to the momentum of Texas as a leader in the ‘geothermal anywhere’ revolution, leveraging the robust oil and gas industry profile in the state,” says Ken Wisian, associate director of the Environmental Division at the U.S. Bureau of Economic Geology.

The Department of Defense kicked off its geothermal initiative in September 2023. Specifically, the Army, Navy, and Defense Innovation Unit launched four exploratory geothermal projects at three U.S. military installations.

One of the three installations is the Air Force’s Joint Base San Antonio. Canada-based geothermal company Eavor is leading the San Antonio project.

Another geothermal company, Atlanta-based Teverra, was tapped for an exploratory geothermal project at the Army’s Fort Wainwright in Alaska. Teverra maintains an office in Houston.

------

This article originally ran on EnergyCapital.