A unique innovation from the University of Houston has the potential to help stroke victims recover mobility. Photo courtesy of UH

A University of Houston professor has taking a huge step in advancing his game-changing stroke recovery tech.

Jose Luis Contreras-Vidal, the director of the UH BRAIN Center, recently published his work on a noninvasive brain-machine in a summer issue of the journal Sensors. InnovationMap first reported on Contreras-Vidal's technology in 2022, when it was being tested.

Contreras-Vidal's device uses a wireless, mobile dry-electrode headset placed on the scalp to convert electroencephalography (EEG) recordings (or measurements of electrical activity in different parts of the brain) to interface with a closed-loop brain–computer (BCI) and communicate with exoskeleton devices. Together, the technology triggers robotic movement based on the wearer's brain activity.

The technology has potential to boost cortical plasticity after a stroke, which can improve motor skills recovery.

According to a statement from UH, a patent is pending on Contreras-Vidal's BCI algorithm and the self-positioning dry electrode bracket used on the scalp. The technology has also now been validated and tested at the University of Houston.

Contreras-Vidal says the technology makes stroke recovery easier for the user and even possible at home.

“Most commercial EEG-based BCI systems are tethered to immobile processing hardware or require complex programming or set-up, making them difficult to deploy outside of the clinic or laboratory without technical assistance or extensive training," he says in a statement. "A portable and wireless BCI system is highly preferred so it can be used outside lab in clinical and non-clinical mobile applications at home, work, or play.”

Additionally, the technology uses off-the-shelf components and is adjustable to fit about 90 percent of the population, according to UH.

"Current commercial EEG amplifiers and BCI headsets are prohibitively expensive, lack interoperability, or fail to provide a high signal quality or closed-loop operation, which are vital for BCI applications,” Contreras-Vidal adds.

The development of this technology was originally funded in part by an $813,999 grant from the National Science Foundation’s Division of Translational Impacts. UH reports that about 795,000 people in the United States suffer from a stroke annually.

Other leaders in Houston’s medical industry have tapped into innovative ways to treat and rehabilitate stroke patients in recent years. Baylor St. Luke's Hospital began using AI to reduce the time it takes to treat patients who've suffered from a stroke in 2021.

Stroke patients have a new hope for arm rehabilitation thanks to a team from UH. Photo courtesy of UH

Robotic device created at the University of Houston helps stroke patients to rehabilitate

next-gen recovery

Almost 800,000 people in the United States suffer from a stroke annually — and the affliction affects each patient differently. One University of Houston researcher has created a device that greatly improves the lives of patients whose stroke affected motor skills.

UH engineering professor Jose Luis Contreras-Vidal developed a next-generation robotic arm that can be controlled by the user's brainwaves. The portable device uses a brain-computer interface (BCI) developed by Contreras-Vidal. Stroke patient Oswald Reedus, 66, is the first person to use a device of this kind.

Reedus lost the use of his left arm following a stroke that also caused aphasia, or difficulty speaking. While he's been able to recover his ability to speak clearly, the new exoskeleton will help rehabilitate his arm.

When strapped into the noninvasive device, the user's brain activity is translated into motor commands to power upper-limb robotics. As patients like Reedus use the device, more data is collected to improve the experience.

“If I can pass along anything to help a stroke person’s life, I will do it. For me it’s my purpose in life now,” says Reedus in a news release from UH. His mother and younger brother both died of strokes, and Reedus is set on helping the device that can help other stroke patients recover.

Contreras-Vidal, a Hugh Roy and Lillie Cranz Cullen distinguished professor, has led his device from ideation to in-home use, like with Reedus, as well as clinical trials at TIRR Memorial Hermann. The project is funded in part from an $813,999 grant from the National Science Foundation’s newly created Division of Translational Impacts.

"Our project addresses a pressing need for accessible, safe, and effective stroke rehabilitation devices for in-clinic and at-home use for sustainable long-term therapy, a global market size expected to currently be $31 billion," Contreras-Vidal says in the release. "Unfortunately, current devices fail to engage the patients, are hard to match to their needs and capabilities, are costly to use and maintain, or are limited to clinical settings."

Dr. Gerard E. Francisco, chief medical officer and director of the Neuro Recovery Research Center at TIRR Memorial Hermann, is leading the clinical trials for the device. He's also chair and professor in the Department of Physical Medicine and Rehabilitation at McGovern Medical School at UTHealth Houston. He explains that TIRR's partnership with engineering schools such as the Cullen College of Engineering at UH and others around the nation is strategic.

“This is truly exciting because what we know now is there are so many ways we can induce neuroplasticity or how we can boost recovery,” says Francisco in the release. “That collaboration is going to give birth to many of these groundbreaking technologies and innovations we can offer our patients.”

Both parts of the device — a part that attaches to the patient's head and a part affixed to their arm — are noninvasive. Photo courtesy of UH

Baylor St. Luke's Hospital is using a new Bay Area technology to provide treatment to stroke patients. Photo courtesy Baylor St. Luke's

Houston hospital taps artificial intelligence to boost stroke treatment

health tech

For neurologists and neurocritical care providers like Dr. Chethan Rao, medical director of Neuroscience ICU at Baylor St. Luke's Hospital, time is incredibly important when it comes to brain-related recoveries.

"For every minute that you don't treat a patient with a stroke, 2 million nerve cells die. In the normal aging process, you lose about 35,000 cells a year or so," Rao says. "In other words, you age about 10 years every minute you don't get a treatment for stroke."

This is why his team is using new technologies, softwares, and innovation to drastically reduce the time it takes to treat patients who've suffered from a stroke starting from the moment they enter through the doors of their hospital.

One of the latest advancements at Baylor St. Luke's is the adoption of the San Francisco-based artificial intelligence app called Viz.ai across its stroke care teams.

The app received FDA approval in February 2020 and uses deep learning algorithms to analyze CAT scans for suspected large vessel occlusion (LVO) strokes. Baylor purchased the software about a year ago and is the first Houston-area hospital to use artificial intelligence for this type of treatment.

Viz.ai instantly allows doctors to determine salvageable and unsalvageable brain tissue, creating what Dr. Rao describes as a "map" for any potential procedures. Determining the viability of this type of treatment traditionally would take about 15 to 20 minutes, according to Rao.

"That's the reason artificial intelligence and automated technology has become extremely important. Because the more you've reduced the time it's required to make decisions and to provide treatments for stroke, that benefit is humungous for the patient," he says.

Rao says that his team uses the software about every day and has treated roughly 140 stroke patients with guidance from the tool.

Next the hospital aims to connect Viz.ai with additional automated systems it has adopted to speed up processes for stroke patients and manage their care, including TigerConnect for internal HIPAA-approved messaging and Decisio, a Houston-based product that captures key time stamps.

And Rao adds that the hospital is researching ways to extend the use of Viz.ai for select patients—to salvage more brain matter and analyze additional neurological events.

"More exciting things will be coming out of it," he says. "We're also working on helping it analyze aneurysms, not just blockages. Can we locate the bleeds, so that we can create different alert systems and then create different treatment pathways immediately?"

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

2 UH projects named finalists for $50M fund to shape future of Gulf Coast

Looking to the Future

Two University of Houston science projects have been selected as finalists for the Gulf Futures Challenge, which will award a total of $50 million to develop ideas that help benefit the Gulf Coast.

Sponsored by the National Academies of Science, Engineering and Medicine’s Gulf Coast Research Program and Lever for Change, the competition is designed to spark innovation around problems in the Gulf Coast, such as rising sea levels, pollution, energy security, and community resiliency. The two UH projects beat out 162 entries from organizations based in Alabama, Florida, Louisiana, Mississippi, and Texas.

“Being named a finalist for this highly competitive grant underscores the University of Houston’s role as a leading research institution committed to addressing the most pressing challenges facing our region,” said Claudia Neuhauser, vice president for research at UH.

“This opportunity affirms the strength of our faculty and researchers and highlights UH’s capacity to deliver innovative solutions that will ensure the long-term stability and resilience of the Gulf Coast.”

One project, spearheaded by the UH Repurposing Offshore Infrastructure for Continued Energy (ROICE) program, is studying ways to use decommissioned oil rig platforms in the Gulf of Mexico as both clean energy hydrogen power generators as well a marine habitats. There are currently thousands of such platforms in the Gulf.

The other project involves the innovative recycling of wind turbines into seawall and coastal habitats. Broken and abandoned wind turbine blades have traditionally been thought to be non-recyclable and end up taking up incredible space in landfills. Headed by a partnership between UH, Tulane University, the University of Texas Health Science Center at Houston, the city of Galveston and other organizations, this initiative could vastly reduce the waste associated with wind farm technology.

wind turbine recycled for Gulf Coast seawall. Wind turbines would be repurposed into seawalls and more. Courtesy rendering

"Coastal communities face escalating threats from climate change — land erosion, structural corrosion, property damage and negative health impacts,” said Gangbing Song, Moores Professor of Mechanical and Aerospace Engineering at UH and the lead investigator for both projects.

“Leveraging the durability and anti-corrosive properties of these of decommissioned wind turbine blades, we will build coastal structures, improve green spaces and advance the resilience and health of Gulf Coast communities through integrated research, education and outreach.”

The two projects have received a development grant of $300,000 as a prize for making it to the finals. When the winner are announced in early 2026, two of the projects will net $20 million each to bring their vision to life, with the rest earning a consolation prize of $875,000, in additional project support.

In the event that UH doesn't grab the grand prize, the school's scientific innovation will earn a guaranteed $1.75 million for the betterment of the Gulf Coast.

---

This article originally appeared on CultureMap.com.

Kids, kicks and connectivity: Xfinity makes soccer a shared experience

The Beautiful Game

For soccer mom Lana Chase, weekends were a whirlwind of cleats, carpooling, and cheering from the sidelines. Now that her daughter Miah graduated high school in May, the Chase Family’s love for the game hasn't stopped. It's shifted to their living room, where Comcast’s new Xfinity streaming platform brings the global game home.

“We’re a soccer family through and through,” says Chase. “Miah played soccer from about age 8 until 16, and we love the World Cup! Xfinity makes it easy for all of us to watch what we love together.”

One platform, every goal

Xfinity's new World Soccer Ticket package eliminates the chaos of juggling apps, subscriptions, or subpar streams. Families can now enjoy more than 1,500 matches from across the globe.

With parental controls, age-appropriate content, and smart recommendations, Xfinity turns soccer into family-friendly entertainment. Whether it’s a weekend watch party or a quiet school night, the platform adapts to every household’s rhythm.

“Figuring out where to watch your favorite team or match is often a painful game of chance. Now, with World Soccer Ticket, there’s no better way to watch the beautiful game than with Xfinity,” says Jon Gieselman, chief growth officer for Comcast's connectivity & platforms. “It’s easy, we did the work for our customers and pulled together the most coveted leagues and tournaments – from Premier League, LALIGA and Champions League to the World Cup – and put them in one place. We added some magic to the experience, with innovations like Multiview, 4K, and Sports Zone all easily accessible with one simple click or voice command.”

World Cup in Houston

With the 2026 World Cup on the horizon, the timing couldn't have been better. The world tournament will be the largest Spanish-language coverage ever offered by Telemundo, powered by Comcast NBCUniversal's technology, storytelling, and scale.

Telemundo and Peacock hold the exclusive Spanish language rights to "el Mundial," including all 104 matches streaming live on Peacock, with 92 matches airing on Telemundo and 12 on Universo. Live crews will cover every event in all 16 host cities, including Houston.

Xfinity customers will have access to pregame, halftime, and postgame coverage with unprecedented immersive experiences. The 2026 World Cup will be the most exciting event of the summer.

"We know other soccer families who watch matches with their little brothers and sisters. It’s not just a game, it’s family time. It's an even bigger deal with the tournament being just down the road in Houston next year,” Chase adds.

Comcast’s AI-powered platform personalizes the viewing experience, recommending matches and highlights based on each family member’s preferences.

World Soccer Ticket is available for an all-in monthly price of $85. It includes nearly 60 broadcast, cable news, and English- and Spanish-language sports channels, and a subscription to Peacock Premium so customers can enjoy a huge collection of movies, shows, news, and other live sports alongside all their favorite soccer programming.

Subscribe to World Soccer Ticket here.

Houston digital health platform Koda closes $7 million funding round

fresh funding

Houston-based digital advance care planning company Koda Health has closed an oversubscribed $7 million series A funding round.

The round, led by Evidenced, with participation from Mudita Venture Partners, Techstars and Texas Medical Center, will allow the company to scale operations and expand engineering, clinical strategy and customer success, according to a news release.

“This funding allows us to create more goals-of-care product lines, expand our national footprint, and bring goal-concordant care to millions more patients and families," Tatiana Fofanova, co-founder and CEO of Koda Health, said in the release.

Koda Health, which was born out of the TMC's Biodesign Fellowship in 2020, has seen major growth this year and said it now supports more than 1 million patients nationwide. The company integrated its end-of-life care planning platform with Dallas-based Guidehealth in April and with Epic Systems in July. Users of Epic's popular Mychart system and Guidehealth's clinically integrated networks can now document and share their care preferences, goals and advance directives for health systems using Koda Health's platform. It also has partnerships with Cigna, Privia and Memorial Hermann.

The company shared that the recent series A "marks a pivotal moment," as it has secured investments from influential leaders in the healthcare and venture capital space.

“Koda is the only company combining technology and service to deliver comprehensive solutions that help health plans, providers, and health systems scale goals-aligned care. With satisfied customers expanding their partnerships and policy shifts reinforcing the need for patient-centered care that also contains costs, we couldn’t be more excited to support the Koda team and their vision,” Sean Glass, managing partner at Evidenced, said in the release.

According to the company, a recent peer-reviewed study with Houston Methodist ACO showed that the platform can have a major impact on palliative care results and costs. The findings showed:

  • 79 percent reduction in terminal hospitalizations
  • 20 percent decrease in inpatient length of stay
  • 51 percent increase in hospice use among decedents
  • Nearly $9,000 in average savings per patient

“Patients long for clarity, families deserve peace of mind, and providers demand ease of use,” Dr. Desh Mohan, chief medical officer of Koda Health, added in the release. “At Koda, we make it possible to deliver all three — transforming Advance Care Planning into a compassionate, ongoing dialogue that honors patients and supports families every step of the way.”

Koda Health also closed an oversubscribed seed round for an undisclosed amount last year, with investments from AARP, Memorial Hermann Health System and the Texas Medical Center Venture Fund. Read more here.