A new tool being used at Houston Methodist taps into artificial intelligence breast cancer diagnosis. Photo courtesy of Houston Methodist

In the medical field, billions of dollars are wasted each year — about $935 billion, but who's counting? According to a paper published by the JAMA Network, an estimated $75.7 billion to $101.2 billion is wasted through overtreatment. Of the many procedures that can lead to wasted resources, breast cancer biopsies are a major source of overtreatment. Houston Methodist Hospital is using artificial intelligence to create a more efficient and accurate Breast Cancer Risk Calculator, called iBrisk.

Breast cancer is something that plagues the lives of many women, and some men. According to the National Breast Cancer Foundation, one in eight women will be diagnosed with breast cancer in their lifetime.

Women are advised to start having annual mammograms to screen for breast cancer starting at age 40 to try to catch cancer in its earliest stages. With mammograms becoming a standard procedure, the process inevitably leads to more biopsies.

While more biopsies sound like the obvious course of action, Houston Methodist Hospital shares that out of 10,000 women biopsied, less than two will be positive while using the national standard. The result of a negative biopsy? Wasted time, resources, and money, as well as undue worry for the patient.

"It's not just wasteful. . .when you do an unnecessary procedure, you're potentially harming the patient," says Stephen Wong, Ph.D. After a negative biopsy, Dr. Wong explains that patients often begin to show emotional responses like high anxiety and low self-esteem. They often speculate the biopsies are wrong, and that they've had a missed cancer diagnosis by their medical provider.

Dr. Wong estimates that more than 700,000 patients have unnecessary biopsies in the breast cancer category alone.

Spearheading the iBrisk tool, Dr. Wong has found a way to utilize a smarter model than the current system for detecting breast cancer risk.

Hospitals across the country currently use the Breast Imaging Reporting and Database System score (BI-RADS), a system created by the American College of Radiology to determine breast cancer risk and biopsy decision-making.

To expand on BI-RADS data, Dr. Wong used multiple patient data points and AI technology to create the improved system. The iBRISK integrates natural language processing, medical image analysis, and deep learning on multi-modal BI-RADS patient data to make one of three recommendations: biopsy not recommended, consider biopsy, or biopsy recommended.

"While using AI, we try to simulate how the physician thinks," explains Dr. Wong. "The physician looks at different data: imaging, patient clinical data, demographic, history and other social factors. You don't rely on one particular thing."

To create iBrisk, Dr. Wong used 12 to 13 years of BI-RAD data at Houston Methodist Hospital to train the AI using deep learning.

He estimates that more than 80 percent of technical information is in the free text format, meaning unstructured data, in the United States.

"We applied an AI technique called natural language processing, which is using the computer to read the text automatically for us," explains Dr. Wong.

This data extraction tool was also used with imaging of mammogram ultrasounds by applying image analysis computer vision.

iBrisk also deploys deep learning, a machine learning tactic where artificial neural networks, inspired by the human brain, learn from large amounts of data. They determined approximately 100 parameters to analyze, including age, sex, socio-economic data, medical history, and insurance plans. After putting the data points into a deep learning method, the AI reduced the data points to the 20 risk indicators.

Houston Methodist Hospital used an estimated 11,000 cases for training, and then used 2,200 of its own data to test iBrisk. They have even been able to create unbiased independent validation by working with other hospitals like MD Anderson, testing their patients using iBrisk and confirming the results.

The potential of iBrisk to cut costs and contribute to less overtreatment has garnered support with other hospitals around the country. The breast cancer risk calculator is a collaboration with Dr. Jenny Chang of HMCC and breast oncologists at MD Anderson, UT San Antonio, and University of Utah Cancer Center.

While implicit racial bias has become a more prominent issue in the United States, Houston Methodist's iBrisk grants a neutral, unbiased lens. AI isn't immune to racial bias; in fact, computer scientist and founder of the Algorithmic Justice League, Joy Buolamwini, uncovered the large gender and racial biases of AI systems sold by IBM, Amazon and Microsoft in a 2019 article for Time.

With AI's history of racial bias in mind, Dr. Wong set out to create an impartial, fair system. "Our AI data is not sensitive to race. . .it's unbiased," he explains.

Houston Methodist Hospital plans to expand the iBrisk model to other forms of cancer in the future, including its next venture into thyroid and incidental lung nodule screenings.

The AI allows patients to save the stress of getting a biopsy.

"We are very careful to put any drugs or any procedure into clinical workflow until we are very sure you really have to pick this [outcome]," explains Dr. Wong. Using advanced risk detectors like iBrisk allows medical practitioners to make more thorough, informed decisions for patients looking into biopsies.

The categories are broken into low, moderate and high-risk groups. The low-risk groups have seen a 99.8 percent accuracy in results, missing only two cases out of a sample of 1,228. Patients that have fallen into the high-risk groups (leading patients to get a biopsy) have seen an 85.9 percent accuracy, compared to radiology, which is 25 percent accurate according to Dr. Wong.

Dr. Wong notes that patients that fall in the moderate section of the risk assessment can then have a dialogue with their physician to determine if they want to move forward with the biopsy. In the moderate category, there is a 93.4 percent accuracy.

If implemented, iBrisk would be able to reduce 75 percent of unnecessary biopsies, estimates Dr. Wong.

Currently, Houston Methodist Hospital is using AI technology outside of oncology, with the recent release of a tool that can diagnose strokes using a smartphone, announced in Science Daily. The tool, which can diagnose abnormalities in a patient's speech and facial muscular movements, was made in collaboration with Dr. Jay Volpi of Eddy Scullock Stroke Center at Houston Methodist Hospital.

"We are answering bigger questions," explains Dr. Wong, who looks forward to continuing to expand AI capabilities and risk calculators at Houston Methodist Hospital.

In the future, Dr. Wong looks forward to doing a multicenter trial to bring this technology outside of Texas.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space taps solar array developer for first space station module

space contract

Houston-based Axiom Space is making progress on developing its commercial space station.

The company awarded Florida-based Redwire Corporation a contract to develop and deliver roll-out solar array (ROSA) wings to power the Axiom Payload Power Thermal Module (AxPPTM), which will be the first module for the new space station.

AxPPTM will initially attach to the International Space Station. AxPPTM will later separate from the ISS and rendezvous with Axiom’s Habitat 1 (AxH1) on orbit. Eventually, an airlock, Habitat 2 (AxH2) and finally the Research and Manufacturing Facility (AxRMF) will be added to the first two Axiom modules.

AxPPTM is anticipated to launch toward the end of 2027. The two-module station (AxPPTM and AxH1) is expected to be operational as a free-flying station by 2028, and the full four-module station around 2030.

The modules will be integrated and assembled at Axiom Space’s Assembly and Integration facility, making them the first human-rated spacecraft built in Houston.

Redwire’s ROSA technology was originally developed for the ISS, according to Space News. It has yielded a 100 percent success rate on on-orbit performance. The technology has also been used on NASA’s Double Asteroid Redirection Test mission, the Maxar-built Power and Propulsion Element for the Artemis Lunar Gateway and Thales Alenia Space’s Space Inspire satellites.

“As a market leader for space power solutions, Redwire is proud to be selected as a strategic supplier to deliver ROSAs for Axiom Space’s first space station module,” Mike Gold, Redwire president of civil and international space, said in a news release. “As NASA and industry take the next steps to build out commercial space stations to maintain U.S. leadership in low-Earth orbit, Redwire continues to be the partner of choice, enabling critical capabilities to ensure on-orbit success.”

Greentown Houston to add new AI lab for energy startups

AI partnership

Greentown Labs has partnered with Shoreless to launch an AI lab within its Houston climatetech incubator.

"Climatetech and energy startups are transforming industries, and AI is a critical tool in that journey," Lawson Gow, Greentown's Head of Houston, said in a news release. "We're excited to bring this new offering to our entrepreneurs and corporate partners to enhance the way they think about reducing costs and emissions across the value chain."

Shoreless, a Houston-based company that enables AI adoption for enterprise systems, will support startups developing solutions for supply-chain optimization and decarbonization. They will offer Greentown members climate sprint sessions that will deliver AI-driven insights to assist companies in reducing Scope 3 emissions, driving new revenue streams and lowering expenses. Additionally, the lab will help companies test their ideas before attempting to scale them globally.

"The future of climatetech is intertwined with the future of AI," Ken Myers, Founder and CEO of Shoreless, said in a news release. "By launching this AI lab with Greentown Labs, we are creating a collaborative ecosystem where innovation can flourish. Our agentic AI is designed to help companies make a real difference, and we are excited to see the groundbreaking solutions that will emerge from this partnership."

Greentown and Shoreless will collaborate on workshops that address industry needs for technical teams, and Shoreless will also work to provide engagement opportunities and tailored workshops for Greentown’s startups and residents. Interested companies can inquire here.

Recently, Greentown Labs also partnered with Los Angeles-based software development firm Nominal to launch the new Industrial Center of Excellence at Greentown's Houston incubator. It also announced a partnership with Houston-based EnergyTech Nexus, which will also open an investor lounge on-site last month. Read more here.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston medical institutions launch $6M kidney research incubator

NIH funding

Institutions within Houston’s Texas Medical Center have launched the Houston Area Incubator for Kidney, Urologic and Hematologic Research Training (HAI-KUH) program. The incubator will be backed by $6.25 million over five years from the National Institutes of Health and aims to create a training pipeline for researchers.

HAI-KUH will include 58 investigators from Baylor College of Medicine, Texas Children’s Hospital, the University of Texas Health Science Center at Houston, University of Houston, Houston Methodist Research Institute, MD Anderson Cancer Center, Rice University and Texas A&M University Institute of Biosciences and Technology. The program will fund six predoctoral students and six postdoctoral associates. Trainees will receive support in scientific research, professional development and networking.

According to the organizations, Houston has a high burden of kidney diseases, hypertension, sickle cell disease and other nonmalignant hematologic conditions. HAI-KUH will work to improve the health of patients by building a strong scientific workforce that leverages the team's biomedical research resources to develop research skills of students and trainees and prepare them for sustained and impactful careers. The funding comes through the National Institute of Diabetes and Digestive and Kidney Diseases.

The principal investigators of the project include Dr. Alison Bertuch, professor of pediatric oncology and molecular and human genetics at BCM; Peter Doris, professor and director of the Institute of Molecular Medicine Center for Human Genetics at UT Health; and Margaret Goodell, professor and chair of the Department of Molecular and Cellular Biology at Baylor.

“This new award provides unique collaborative training experiences that extend beyond the outstanding kidney, urology, and hematology research going on in the Texas Medical Center,” Doris said in a news release. “In conceiving this award, the National Institute of Diabetes and Digestive and Kidney Diseases envisioned trainee development across the full spectrum of skills required for professional success.”

Jeffrey Rimer, a professor of Chemical Engineering, is a core investigator on the project and program director at UH. Rimer is known for his breakthroughs in using innovative methods in control crystals to help treat malaria and kidney stones. Other co-investigators include Dr. Wolfgang Winkelmeyer (Baylor), Oleh Pochynyuk (UTHealth), Dr. Rose Khavari (Houston Methodist) and Pamela Wenzel (UT Health).

“This new NIH-sponsored training program will enable us to recruit talented students and postdocs to work on these challenging areas of research,” Rimer added in a release.