As corporate debt markets continue to grow in importance, it will become crucial for investors and regulators to understand the nuanced factors influencing their liquidity. Photo via Getty Images

At the end of every quarter, publicly traded companies announce their profits and losses in an earnings report. These updates provide insight into a company’s performance and, in theory, give investors and shareholders clarity on whether to buy, sell or hold. If earnings are good, the stock price may soar. If they’re down, the price might plunge.

However, the implications for the stock price may not be immediately clear to all investors. In the face of this uncertainty, sellers will ask for high prices, and buyers will offer low ones, creating a significant “bid-ask spread.” When this happens, it becomes more costly to trade, and the stock becomes less liquid.

This is a well-documented effect on equity stock markets. However, according to research by Stefan Huber (Rice Business), Chongho Kim (Seoul National University) and Edward M. Watts (Yale SOM), the corporate bond market responds differently to earnings news. This is because bond markets differ from stock markets in a significant way.

Stocks v. Bonds: What Happens When Earnings Are Announced?

Equities are usually traded on centralized exchanges (e.g., New York Stock Exchange). The exchange automatically queues up buyers and sellers according to the quote they’ve entered. Trades are executed electronically, and the parties involved are typically anonymous. A prospective buyer might purchase Microsoft shares from someone drawing down their 401(k) — or they could be buying from Bill Gates himself.

Corporate bond markets work differently. They are “over-the-counter” (OTC) markets, meaning a buyer or seller needs to find a counterparty to trade with. This involves getting quotes from and negotiating with potential counterparties. This is an inherent friction in bond trading that results in much higher costs of trading in the form of wider bid-ask spreads.

Here’s what Huber and his colleagues learned from the research: Earnings announcements prompt many investors to trade. And on OTC markets, potential buyers and sellers become easier to find and negotiate with.

A Stronger Bargaining Position for Bonds

According to Huber, “When earnings information comes out, a lot of people want to trade. In bond markets, that makes it much easier to find someone to trade with. The more options you have to trade, the stronger your bargaining position becomes, and the lower your trading costs go.”

He compares the process to shopping in a market with a flexible approach to pricing.

“Let's say you're at a farmers market and you want to buy an apple,” Huber says. “If there is only one seller, you buy the apple from that person. They can ask for whatever price they want. But if there are multiple sellers, you can ask around, and there is potential to get a better price. The price you get depends on the number of options you have in trading partners.”

What’s at Stake?

Although bonds receive less attention than equities, the stakes are high. There is about $10 trillion in outstanding corporate debt in the U.S., and more than $34 billion in average daily trading volume.

A detailed record of bond trades is available from the Financial Industry Regulatory Authority (FINRA), which requires that trades be reported via their Trade Reporting and Compliance Engine (TRACE).

The study from Huber and co-authors uses an enhanced version of TRACE to examine trades executed between 2002 and 2020. The team analyzed the thirty-day periods before and after earnings announcements to gather data about volume, bid-ask spreads and other measures of liquidity.

They find that, like on the stock market, there are more investors and broker-dealers trading bonds around earnings announcements. However, unlike on the stock market, transaction costs for bonds decrease by 6 to 7 percent in the form of bid-ask spreads.

What Sets This Research Apart?

“Taking a purely information asymmetry-based view would predict that what happens to stock liquidity would also happen to bonds,” Huber says. “A piece of information drops, and some people are better able to work with it, so others price protect, and bid-ask spreads and the cost of trading go up.”

“But if you consider the search and bargaining frictions in bond markets, you get a more nuanced picture. While information asymmetry increases, like it does on stock markets, the information prompts more investors into bond trading, which makes it easier to find counterparties and get better transaction prices. Consequently, bid-ask spreads go down. This search and bargaining friction does not really exist on equities exchanges. But we cannot ignore it in OTC markets.”

As corporate debt markets continue to grow in importance, it will become crucial for investors and regulators to understand the nuanced factors influencing their liquidity. This study provides a solid foundation for future research.

------

This article originally ran on Rice Business Wisdom. For more, see “Earnings News and Over-the-Counter Markets.” Journal of Accounting Research 62.2 (2024): 701-35.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.