The latest Starship test flight tumbled out of control. Photo via spacex.com

The Federal Aviation Administration is demanding an accident investigation into the out-of-control Starship flight by SpaceX on May 27.

Tuesday's test flight from Texas lasted longer than the previous two failed demos of the world's biggest and most powerful rocket, which ended in flames over the Atlantic. The latest spacecraft made it halfway around the world to the Indian Ocean, but not before going into a spin and breaking apart.

The FAA said Friday that no injuries or public damage were reported.

The first-stage booster — recycled from an earlier flight — also burst apart while descending over the Gulf of Mexico. But that was the result of deliberately extreme testing approved by the FAA in advance.

All wreckage from both sections of the 403-foot (123-meter) rocket came down within the designated hazard zones, according to the FAA.

The FAA will oversee SpaceX's investigation, which is required before another Starship can launch.

CEO Elon Musk said he wants to pick up the pace of Starship test flights, with the ultimate goal of launching them to Mars. NASA needs Starship as the means of landing astronauts on the moon in the next few years.

SpaceX's latest launch was thrilling, but ended with the rocket being destroyed. Screengrab via SpaceX/X

SpaceX loses mega rocket in latest thrilling Starship test flight

Testing

SpaceX launched its Starship rocket on its latest test flight Thursday, but the spacecraft was destroyed following a thrilling booster catch back at the pad.

Elon Musk’s company said Starship broke apart — what it called a “rapid unscheduled disassembly." The spacecraft's six engines appeared to shut down one by one during ascent, with contact lost just 8 1/2 minutes into the flight.

The spacecraft — a new and upgraded model making its debut — was supposed to soar across the Gulf of Mexico from Texas on a near loop around the world similar to previous test flights. SpaceX had packed it with 10 dummy satellites for practice at releasing them.

A minute before the loss, SpaceX used the launch tower's giant mechanical arms to catch the returning booster, a feat achieved only once before. The descending booster hovered over the launch pad before being gripped by the pair of arms dubbed chopsticks.

The thrill of the catch quickly turned into disappointment for not only the company, but the crowds gathered along the southern tip of Texas.

“It was great to see a booster come down, but we are obviously bummed out about [the] ship,” said SpaceX spokesman Dan Huot. “It’s a flight test. It’s an experimental vehicle," he stressed.

The last data received from the spacecraft indicated an altitude of 90 miles and a velocity of 13,245 mph.

Musk said a preliminary analysis suggests leaking fuel may have built up pressure in a cavity above the engine firewall. Fire suppression will be added to the area, with increased venting and double-checking for leaks, he said via X.

The 400-foot rocket had thundered away in late afternoon from Boca Chica Beach near the Mexican border. The late hour ensured a daylight entry halfway around the world in the Indian Ocean. But the shiny retro-looking spacecraft never got nearly that far.

SpaceX had made improvements to the spacecraft for the latest demo and added a fleet of satellite mockups. The test satellites were the same size as SpaceX’s Starlink internet satellites and, like the spacecraft, were meant to be destroyed upon entry.

Musk plans to launch actual Starlinks on Starships before moving on to other satellites and, eventually, crews.

It was the seventh test flight for the world’s biggest and most powerful rocket. NASA has reserved a pair of Starships to land astronauts on the moon later this decade. Musk’s goal is Mars.

Hours earlier in Florida, another billionaire’s rocket company — Jeff Bezos’ Blue Origin — launched the newest supersized rocket, New Glenn. The rocket reached orbit on its first flight, successfully placing an experimental satellite thousands of miles above Earth. But the first-stage booster was destroyed, missing its targeted landing on a floating platform in the Atlantic.

In SpaceX's recent test flight launch, the Starship rocket's booster returned to the launch pad thanks to new tech from the company. Photo via Elon Musk/x.com

SpaceX reaches milestone achievement with latest Starship rocket launch

science nonfiction

Texas-based SpaceX pulled off the boldest test flight yet of its enormous Starship rocket on Sunday, catching the returning booster back at the launch pad with mechanical arms.

A jubilant Elon Musk called it “science fiction without the fiction part.”

Towering almost 400 feet (121 meters), the empty Starship blasted off at sunrise from the southern tip of Texas near the Mexican border. It arced over the Gulf of Mexico like the four Starships before it that ended up being destroyed, either soon after liftoff or while ditching into the sea. The previous one in June had been the most successful until Sunday's demo, completing its flight without exploding.

This time, Musk, SpaceX's CEO and founder, upped the challenge for the rocket that he plans to use to send people back to the moon and on to Mars.

At the flight director's command, the first-stage booster flew back to the launch pad where it had blasted off seven minutes earlier. The launch tower's monstrous metal arms, dubbed chopsticks, caught the descending 232-foot (71-meter) stainless steel booster and gripped it tightly, dangling it well above the ground.

“The tower has caught the rocket!!” Musk announced via X. “Big step towards making life multiplanetary was made today.”

Company employees screamed in joy, jumping and pumping their fists into the air. NASA joined in the celebration, with Administrator Bill Nelson sending congratulations.

Continued testing of Starship will prepare the nation for landing astronauts at the moon’s south pole, Nelson noted. NASA’s new Artemis program is the follow-up to Apollo, which put 12 men on the moon more than a half-century ago.

“Folks, this is a day for the engineering history books,” SpaceX engineering manager Kate Tice said from SpaceX headquarters in Hawthorne, California.

“Even in this day and age, what we just saw is magic,” added company spokesman Dan Huot from near the launch and landing site. “I am shaking right now.”

It was up to the flight director to decide, in real time with a manual control, whether to attempt the landing. SpaceX said both the booster and launch tower had to be in good, stable condition. Otherwise, it was going to end up in the gulf like the previous ones. Everything was judged to be ready for the catch.

The retro-looking spacecraft launched by the booster continued around the world, soaring more than 130 miles (212 kilometers) high. An hour after liftoff, it made a controlled landing in the Indian Ocean, adding to the day's achievement. Cameras on a nearby buoy showed flames shooting up from the water as the spacecraft impacted precisely at the targeted spot and sank, as planned.

“What a day,” Huot said. “Let's get ready for the next one.”

The June flight came up short at the end after pieces came off. SpaceX upgraded the software and reworked the heat shield, improving the thermal tiles.

SpaceX has been recovering the first-stage boosters of its smaller Falcon 9 rockets for nine years, after delivering satellites and crews to orbit from Florida or California. But they land on floating ocean platforms or on concrete slabs several miles from their launch pads — not on them.

Recycling Falcon boosters has sped up the launch rate and saved SpaceX millions. Musk intends to do the same for Starship, the biggest and most powerful rocket ever built with 33 methane-fuel engines on the booster alone.

Musk said the captured Starship booster looked to be in good shape, with just a little warping of some of the outer engines from all the heat and aerodynamic forces. That can be fixed easily, he noted.

NASA has ordered two Starships to land astronauts on the moon later this decade. SpaceX intends to use Starship to send people and supplies to the moon and, eventually Mars.

___

The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute’s Science and Educational Media Group. The AP is solely responsible for all content.

The spacecraft reached an altitude of nearly 130 miles before landing in the Indian Ocean as planned. Photo via spacex.com

SpaceX's mega rocket completes its fourth test flight from Texas without exploding

houston, we have liftoff

SpaceX’s mega Starship rocket completed its first full test flight Thursday, returning to Earth without exploding after blasting off from Texas.

It was the fourth launch of the world’s biggest and most powerful rocket, standing nearly 400 feet (121 meters) tall. The three previous flight demos ended in explosions. This time, the rocket and the spacecraft managed to splash down in a controlled fashion, making the hourlong flight the longest and most successful yet.

“Despite loss of many tiles and a damaged flap, Starship made it all the way to a soft landing in the ocean!” SpaceX CEO Elon Musk said via X.

Starship was empty as it soared above the Gulf of Mexico and headed east on a flight to the Indian Ocean. Within minutes, the first-stage booster separated from the spacecraft and splashed into the gulf precisely as planned, after firing its engines.

The spacecraft reached an altitude of nearly 130 miles (211 kilometers), traveling at more 16,000 mph (26,000 kph), before beginning its descent. Live views showed parts of the spacecraft breaking away during the intense heat of reentry, but a cracked camera lens obscured the images.

The spacecraft remained intact enough to transmit data all the way to its targeted splashdown site in the Indian Ocean.

It was a critical milestone in the company’s plan to eventually reuse the rocket that NASA and Musk are counting on to get humanity to the moon and then Mars.

“What a show it has been,” SpaceX launch commentator Kate Tice said from Mission Control at company headquarters in California.

SpaceX came close to avoiding explosions in March, but lost contact with the spacecraft as it careened out of space and blew up short of its goal. The booster also ruptured in flight, a quarter-mile above the gulf.

Last year’s two test flights ended in explosions shortly after blasting off from the southern tip of Texas near the Mexican border. The first one cratered the pad at Boca Chica Beach and hurled debris for thousands of feet (meters).

SpaceX upgraded the software and made some rocket-flyback changes to improve the odds. The Federal Aviation Administration signed off Tuesday on this fourth demo, saying all safety requirements had been met.

Starship is designed to be fully reusable. That’s why SpaceX wants to control the booster’s entry into the gulf and the spacecraft’s descent into the Indian Ocean — it’s intended as practice for planned future landings. Nothing is being recovered from Thursday’s flight.

NASA has ordered a pair of Starships for two moon-landing missions by astronauts, on tap for later this decade. Each moon crew will rely on NASA’s own rocket and capsule to leave Earth, but meet up with Starship in lunar orbit for the ride down to the surface.

SpaceX already is selling tourist trips around the moon. The first private lunar customer, a Japanese tycoon, pulled out of the trip with his entourage last week, citing the oft-delayed schedule.

SpaceX’s founder and CEO has grander plans: Musk envisions fleets of Starships launching people and the infrastructure necessary to build a city on Mars.

___

The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute’s Science and Educational Media Group. The AP is solely responsible for all content.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space taps solar array developer for first space station module

space contract

Houston-based Axiom Space is making progress on developing its commercial space station.

The company awarded Florida-based Redwire Corporation a contract to develop and deliver roll-out solar array (ROSA) wings to power the Axiom Payload Power Thermal Module (AxPPTM), which will be the first module for the new space station.

AxPPTM will initially attach to the International Space Station. AxPPTM will later separate from the ISS and rendezvous with Axiom’s Habitat 1 (AxH1) on orbit. Eventually, an airlock, Habitat 2 (AxH2) and finally the Research and Manufacturing Facility (AxRMF) will be added to the first two Axiom modules.

AxPPTM is anticipated to launch toward the end of 2027. The two-module station (AxPPTM and AxH1) is expected to be operational as a free-flying station by 2028, and the full four-module station around 2030.

The modules will be integrated and assembled at Axiom Space’s Assembly and Integration facility, making them the first human-rated spacecraft built in Houston.

Redwire’s ROSA technology was originally developed for the ISS, according to Space News. It has yielded a 100 percent success rate on on-orbit performance. The technology has also been used on NASA’s Double Asteroid Redirection Test mission, the Maxar-built Power and Propulsion Element for the Artemis Lunar Gateway and Thales Alenia Space’s Space Inspire satellites.

“As a market leader for space power solutions, Redwire is proud to be selected as a strategic supplier to deliver ROSAs for Axiom Space’s first space station module,” Mike Gold, Redwire president of civil and international space, said in a news release. “As NASA and industry take the next steps to build out commercial space stations to maintain U.S. leadership in low-Earth orbit, Redwire continues to be the partner of choice, enabling critical capabilities to ensure on-orbit success.”

Greentown Houston to add new AI lab for energy startups

AI partnership

Greentown Labs has partnered with Shoreless to launch an AI lab within its Houston climatetech incubator.

"Climatetech and energy startups are transforming industries, and AI is a critical tool in that journey," Lawson Gow, Greentown's Head of Houston, said in a news release. "We're excited to bring this new offering to our entrepreneurs and corporate partners to enhance the way they think about reducing costs and emissions across the value chain."

Shoreless, a Houston-based company that enables AI adoption for enterprise systems, will support startups developing solutions for supply-chain optimization and decarbonization. They will offer Greentown members climate sprint sessions that will deliver AI-driven insights to assist companies in reducing Scope 3 emissions, driving new revenue streams and lowering expenses. Additionally, the lab will help companies test their ideas before attempting to scale them globally.

"The future of climatetech is intertwined with the future of AI," Ken Myers, Founder and CEO of Shoreless, said in a news release. "By launching this AI lab with Greentown Labs, we are creating a collaborative ecosystem where innovation can flourish. Our agentic AI is designed to help companies make a real difference, and we are excited to see the groundbreaking solutions that will emerge from this partnership."

Greentown and Shoreless will collaborate on workshops that address industry needs for technical teams, and Shoreless will also work to provide engagement opportunities and tailored workshops for Greentown’s startups and residents. Interested companies can inquire here.

Recently, Greentown Labs also partnered with Los Angeles-based software development firm Nominal to launch the new Industrial Center of Excellence at Greentown's Houston incubator. It also announced a partnership with Houston-based EnergyTech Nexus, which will also open an investor lounge on-site last month. Read more here.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston medical institutions launch $6M kidney research incubator

NIH funding

Institutions within Houston’s Texas Medical Center have launched the Houston Area Incubator for Kidney, Urologic and Hematologic Research Training (HAI-KUH) program. The incubator will be backed by $6.25 million over five years from the National Institutes of Health and aims to create a training pipeline for researchers.

HAI-KUH will include 58 investigators from Baylor College of Medicine, Texas Children’s Hospital, the University of Texas Health Science Center at Houston, University of Houston, Houston Methodist Research Institute, MD Anderson Cancer Center, Rice University and Texas A&M University Institute of Biosciences and Technology. The program will fund six predoctoral students and six postdoctoral associates. Trainees will receive support in scientific research, professional development and networking.

According to the organizations, Houston has a high burden of kidney diseases, hypertension, sickle cell disease and other nonmalignant hematologic conditions. HAI-KUH will work to improve the health of patients by building a strong scientific workforce that leverages the team's biomedical research resources to develop research skills of students and trainees and prepare them for sustained and impactful careers. The funding comes through the National Institute of Diabetes and Digestive and Kidney Diseases.

The principal investigators of the project include Dr. Alison Bertuch, professor of pediatric oncology and molecular and human genetics at BCM; Peter Doris, professor and director of the Institute of Molecular Medicine Center for Human Genetics at UT Health; and Margaret Goodell, professor and chair of the Department of Molecular and Cellular Biology at Baylor.

“This new award provides unique collaborative training experiences that extend beyond the outstanding kidney, urology, and hematology research going on in the Texas Medical Center,” Doris said in a news release. “In conceiving this award, the National Institute of Diabetes and Digestive and Kidney Diseases envisioned trainee development across the full spectrum of skills required for professional success.”

Jeffrey Rimer, a professor of Chemical Engineering, is a core investigator on the project and program director at UH. Rimer is known for his breakthroughs in using innovative methods in control crystals to help treat malaria and kidney stones. Other co-investigators include Dr. Wolfgang Winkelmeyer (Baylor), Oleh Pochynyuk (UTHealth), Dr. Rose Khavari (Houston Methodist) and Pamela Wenzel (UT Health).

“This new NIH-sponsored training program will enable us to recruit talented students and postdocs to work on these challenging areas of research,” Rimer added in a release.