CHI St. Luke's Health has invested in around 40 of the Butterfly iQ devices that can be used to provide accurate and portable ultrasonography on COVID-19 patients. Photo courtesy of CHI St. Luke's

With such a dynamic virus like COVID-19 that affects patients with different levels of severity, the first challenge doctors face when treating infected patients is assessing the situation. CHI St. Luke's Health has been implementing a new technology that allows its physicians better access to that initial diagnosis.

Dr. Jose Diaz-Gomez, an anesthesiologist at CHI St. Luke's Health and ultrasonography expert, says the Butterfly iQ's portable ultrasonography technology has been a key tool in his team's point of care for COVID-19 patients. Over the past few years, ultrasonography equipment has been evolving to be more portable and more accurate. That's what the Butterfly iQ technology provides, and Diaz-Gomez says his team was quick to realize how the technology can help in diagnostics and treatment of coronavirus patients.

A traditional approach to examining a patient's lungs would mean radiography, but Diaz-Gomez says his team saw the opportunity ultrasonography and these new, portable devices had on providing more accurate and timely diagnostics.

"In conditions that are dynamic, you want to have a diagnostic tool that, over time as you're treating a patient, you can see meaningful changes — good or bad," Diaz-Gomez says. "The pandemic has enabled us to use — from the initial care to when they are on the ventilator — ultrasonography to see the changes in the patient's' lungs."

Jose Diaz-Gomez is an anesthesiologist at CHI St. Luke's. Photo courtesy of CHI St. Luke's

The Butterfly iQ device is different from its ultrasound predecessors in that it's built to be more accurate, portable, easy to use, and low cost (even being made available for commercial purchase). According to Diaz-Gomez, he could train someone on the device in just a few hours.

Ahead of the pandemic, CHI St. Luke's had 20 of these devices and now has doubled that initial fleet. Along with the other non-Butterfly iQ ultrasonography devices, Diaz-Gomez's team has access to 70 ultrasonography devices — 80 percent of which are dedicated to COVID-19 patients.

"Our institution was very supportive of bringing a very robust roll-out program for point-of-care ultrasonography during the pandemic," Diaz-Gomez says. "We were able to incorporate 40 ultrasound devices — the Butterfly system. Not only that, we actually implemented a very rigorous infection control process to make sure we do it in a safe manner. You don't want to bring tools that will be another source of transmission from patient to patient."

While this new technology is continuing to make a difference in St. Luke's COVID units, Diaz-Gomez is already looking forward to the difference the devices will make post pandemic.

"Whatever we will face after the pandemic, many physicians will be able to predict more objectively when a patient is deteriorating from acute respiratory failure," he says. "Without this innovation, we wouldn't have been able to be at higher standards with ultrasonography."

The device, with its portability, low cost, and ease of use, also has an application for telemedicine and at-home health, and that's something that's exciting for Diaz-Gomez. However, both in his COVID units or in the home setting, the device is only as good as the clinician who's interpreting the images paired with the other diagnostics.

"The integration of ultrasonography with the clinical practice itself — it has to go hand in hand," Diaz-Gomez says. "The clinical decision will depend on that integration."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

With FDA approval, Houston health tech company prepares nationwide deployment

Houston innovators podcast episode 232

Jessica Traver Ingram has been captivated by the intersection of physics and health care for most of her life, and that passion led her to contributing to the establishment of the Texas Medical Center's Biodesign Fellowship. After helping make the program a reality, Traver Ingram then participated in it as a fellow.

The program selects fellows and then lets them explore the TMC's member institutions to find ways to innovate within unmet clinical needs, and the inefficiency and challenges with placing epidurals and lumbar punctures caught Traver Ingram and her cohort's eye. The process relies completely on the health care practitioner's ability to feel the spine with their fingers to make the injection.

"We kept watching the inefficiencies of these procedures, and everyone was like, 'you're right, we don't really know why we do it this way,'" Traver Ingram says on the Houston Innovators Podcast. "It's really cool to be outsiders watching and observing, because you just see things other people don't see — and that's in any industry."

With that, IntuiTap was born. Traver Ingram describes its tool, the VerTouch, as a "stud finder for the spine." After years of growing the company, she can also now call it FDA-approved.


"FDA clearance allows us to market the device in the United States, so we are entering the commercial launch stage of the company, which is really exciting," Traver Ingram says. "We plan to have these devices available in hospitals across the country within the year."

First up is what Traver Ingram calls a soft launch. The company is picking five institutions that want to be centers of excellence for the device and doing trial launches there before entering into a greater, nationwide rollout.

"It's just crazy that what started as just an idea on paper is now FDA approved and commercially ready and something that patients can see in hospitals this year," Traver Ingram says.

And the timing is important, she explains, adding that where the health care industry seems to be at as a whole is primed for innovation like IntuiTap.

"There's a lot of really exciting developments happening in health care right now," Traver Ingram says. "I feel like we're really at a tipping point for innovation and we're going to see some really big leaps in the next couple of years.

"One of the exciting trends I think that we're seeing is a shift away from blind procedures or procedures that are seen as an art requiring a significant amount of skills toward more science-based, safer, consistent, and repeatable procedures," she continues. "We fit really well into that category, so I'm glad that we're seeing that shift."

Unique cell therapy developed in Houston doses inaugural patient

cancer-fighting innovation

Replay, a genome-writing company headquartered in San Diego, has announced that its first patient has been dosed with an engineered T-Cell Receptor Natural Killer (TCR-NK) cell therapy for relapsed or refractory multiple myeloma.

What does that have to do with Houston? Last year, Replay incorporated a first-in-class engineered TCR-NK cell therapy product company, Syena, using technology developed by Dr. Katy Rezvani at The University of Texas MD Anderson Cancer Center.

Rezvani, a professor of stem cell transplantation and cellular therapy, is the force behind MD Anderson’s Rezvani Lab, a group of 55 people, all focused on harnessing natural killer cells to combat cancer.

“Everybody thinks that the immune system is fighting viruses and infections, but I feel our immune system is capable of recognizing and killing abnormal cells or cells that are becoming cancerous and they're very powerful. This whole field of immunotherapy really refers to the power of the immune system,” Rezvani tells InnovationMap.

Dr. Katy Rezvani is a professor of stem cell transplantation and cellular therapy and the force behind MD Anderson’s Rezvani Lab, which is focused on harnessing natural killer cells to combat cancer. Photo via mdanderson.org

At Rezvani Lab, scientists train immune cells to fight cancer. While cancer drugs like chemotherapy are still the norm, immunotherapy has gained ground, led by Houston research, including the work of Nobel laureate Jim Allison. The harnessed cells are taught to attack cancerous cells, while ignoring healthy ones, says Rezvani. “We’re turning them into heat-seeking missiles,” she explains.

However, there must be a beacon to signal to those “missiles” that there is something to attack. Much of the field has used chimeric antigen receptors (CARs) to achieve that. But they have limitations.

“CARs can only recognize beacons that sit on the surface of the tumor cells,” Rezvani says. “So basically, it's like the tumor cell has to have a hat on it.”

She says that this usually means that the targets that send off a signal are relatively limited, mostly blood cancers. Using T cell receptors (TCRs) may be able to open up the field to look beyond the “hat.” In other words, TCRs can peer inside cells and see what differentiates a tumor cell from healthy cells. With Replay, Rezvani Lab has developed a first-in-class and first-in-human approach of engineering natural killer cells to express the TCR.

There are six different FDA-approved products that use CAR-T cells, but Rezvani says that her TCR-NK-based technology, though still in its early phases, shows great promise.

“We could use it to target many different types of antigens, many different types of cancers, especially solid tumors," she explains. "These cell therapies have a lot of potential — we call them living drugs… It's not like chemotherapy where you have to keep giving different multiple cycles, these cells are very long lived.”

Rezvani, who started her career in London, says that Houston has been instrumental in the success of her lab.

“There are so many opportunities because we have access to some of the most brilliant minds in research,” Rezvani says. “We have some of the best clinicians in the world. We have patients who come to us who are willing to participate in our clinical trials — really put their trust in us — and are committed and want to participate in these clinical studies.”

The role of funding also plays a part. As Rezvani admitted, bringing a new technology to the market is expensive. The philanthropists who help support trials can’t be forgotten among Houston’s finest.

Whether or not Syena produces the first TCR-NK product on the market, Rezvani is enthusiastic and hopeful for the future of her patients.

“The field of immunotherapy is really expanding, the field of cell therapies is expanding, and there is so much promise,” she says. “The promise of AI, big data, all the engineering tools that we have available, the promise of CRISPR — all of that is going to bring what we've learned from biology, from basic science, together to help us make the cell therapies that are going to be safe and and also very effective for our patients.”